

1. Consider the image $g_a(x, y) = \text{jinc}(x - 2.5, y - 2.5)$, where the subscript denotes analog.

a. Calculate and sketch its 2D CSFT $G_a(u, v)$.

The image is sampled at interval 0.5 in both the x and y directions to yield $g[m, n] = g_a(0.5m, 0.5n)$.

b. Based on your answer to part a., calculate and sketch the 2D DSFT $G(\mu, \nu)$.

c. Based on your answer to part b., calculate and sketch the 10×10 2D DFT of $g[m, n]$, $0 \leq m \leq 9$, $0 \leq n \leq 9$. You may assume that $g[m, n] = 0$ outside this range.

Note: Your sketches need only show magnitude.

Hint: You should only do one actual Fourier transform, and that is for part a.

d. Write a Matlab routine to calculate the jinc function.

e. Plot the jinc function along the x axis, and compare with the 2-D sinc function plotted along the x axis.

f. Generate a mesh plot of the 2D jinc function.

g. Sample the jinc function as above, and use Matlab to compute the 2D DFT as in part c. Generate a mesh plot of the 2D DFT.

h. Increase the sampling rate by a factor of 4 in both x and y , and compute the 40×40 2D DFT. Generate a mesh plot of the 2D DFT.

i. Discuss the significance of your results for this problem.

2. The $M \times M$ point 2D DFT is defined as

$$X[k, l] = \sum_{m=0}^{M-1} \sum_{n=0}^{M-1} x[m, n] e^{-j2\pi(km+ln)/M}$$

a. Show that $X[k, l]$ may be computed by performing M 1D length M DFT's of the columns of $x[m, n]$, followed by M 1D length M DFT's of the rows of this intermediate result.

Assume that the 1D DFT's each require $M \log_2 M$ complex operations (CO's) to compute.

b. Determine the number of complex operations required to compute the 2D DFT $X[k, l]$. Compare with the number of CO's required for a single M^2 point 1D DFT.

3. Consider a 3×3 FIR filter with coefficients $h[m, n]$

		m		
		-1	0	1
n		1	0.0	0.5
1		-0.5	0.0	0.5
0		0.0	1.0	0.0
-1		0.5	0.0	-0.5

- a. Find a difference equation that can be used to implement this filter.
- b. Find the output image that results when this filter is applied to the input image shown below:

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0
0	0	0	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	1	0	0	0
0	1	1	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0

- c. Find a simple expression for the frequency response $H(\mu, \nu)$ of this filter.
- d. Plot $H(\mu, \nu)$ along the μ axis ($\nu = 0$), along the ν axis ($\mu = 0$), along the line $\mu = \nu$, and along the line $\mu = -\nu$.
- e. Discuss the relation between your answer to part b. and the filter frequency response.