

1. For each function given below, do the following:

- Express $f(x, y)$ in terms of the special functions given in class.
- Find its CSFT $F(u, v)$ using transform pairs and properties.
- Sketch $F(u, v)$ in enough detail to show that you know what it looks like.

Assume that $f(x, y) = 1$ in shaded regions, and $f(x, y) = 0$ elsewhere.

2. Consider the function $f(x, y)$ defined below:

$$f(x, y) = \begin{cases} 0.5 + 0.5 \cos[2\pi(x/X + y/Y)], & |x| < A/2 \text{ and } |y| < B/2, \\ 0, & \text{else.} \end{cases}$$

For each case below, do the following:

- Carefully sketch $f(x, y)$.
- Find its CSFT $F(u, v)$ using transform pairs and properties. Do **not** use Matlab.
- Sketch $F(u, v)$ in enough detail to show that you know what it looks like.

- $X = 0.5, Y = 100, A = 10, B = 1$
- $X = 2, Y = 2, A = 4, B = 4$

3. An imaging system has point spread function $h(x, y) = 20 \operatorname{rect}(x / 0.1, y / 0.5)$ and magnification $M = 5$. Calculate and carefully sketch the image $g(x, y)$ of the object $f(x, y) = \operatorname{rect}(x - 1, y - 1)$. Be sure to fully dimension your sketch.

4. The signal $f(x, y) = \cos[2\pi(100x + 10y)]$ is multiplied by a grating with transmittance described by

$$g(x, y) = \sum_n \operatorname{rect}[300(x - n / 150), 300y]$$

The product $d(x, y) = f(x, y) g(x, y)$ is then filtered with an ideal low-pass filter with point spread function $h(x, y) = \operatorname{sinc}(150x, 150y)$ to yield the final output $c(x, y)$.

Calculate and sketch the following functions

a. $f(x, y)$	b. $F(u, v)$
c. $g(x, y)$	d. $G(u, v)$
e. $D(u, v)$	f. $d(x, y)$
g. $h(x, y)$	h. $H(u, v)$
i. $C(u, v)$	j. $c(x, y)$