

1. Find expressions for the N point DFT's of the following signals. Simplify your answers as much as possible.

- a. $x[n] = 0.5 \delta[n - (N - 1)/2] - 0.5 \delta[n - (N + 1)/2]$, N odd
- b. $x[n] = \cos(8\pi n / N)$
- c. $x[n] = \cos(3\pi n / N)$

2. In class, we stated the following relation for modulation

$$e^{j2\pi n k_0 / N} x[n] \xrightarrow{\text{DFT}} X[k - k_0].$$

The objective of this problem is to generalize this result to an arbitrary modulating frequency, not just one that is an integer multiple of $2\pi / N$. Toward this end, define $y[n] = e^{j\omega_0 n} x[n]$, and find a simple expression for the DFT $Y[k]$ in terms of $X[k]$. *Hint:* Substitute the inverse DFT of $X[k]$ for $x[n]$ in the definition of $y[n]$.

3. The signal $x(t) = 10 \cos[2\pi(500)t] + 5 \cos[2\pi(2500)t]$ is sampled at 4 kHz using an ideal A/D convertor to produce the digital signal $x[n]$. You compute a 512 point DFT $X[k]$ of this signal. Find the approximate values of k and the amplitudes $|X[k]|$ corresponding to the spectral peaks in the analog signal.
4. Let $v[n]$ be a length N complex-valued signal with DFT $V[k]$.

- a. Show that $\text{DFT}\{v^*[n]\} = V^*[N - k]$.

Let $x[n]$ and $y[n]$ be two real-valued signals with N point DFT's $X[k]$ and $Y[k]$. Form the complex-valued signal $v[n] = x[n] + jy[n]$.

- b. Find expressions for $x[n]$ and $y[n]$ in terms of $v[n]$.
 - c. Combining your answers to Parts a and b, show how the N point DFT's of *two* real signals can be calculated by computing just *one* N point DFT of a complex-valued signal, *i.e.* show how $X[k]$ and $Y[k]$ may be recovered from $V[k]$.
5. Consider the signal

$$x[n] = \cos(\omega_1 n) + a \cos(\omega_2 n) + b d[n],$$

where a and b are constants and $d[n]$ is a sequence of independent Gaussian random variables with zero mean and unit variance.

- a. Write a MATLAB program that will

- i. plot $x[n]$,
- ii. compute the N point DFT $X[k]$ (using FFT routines available within MATLAB),
- iii. plot $|X[k]|$.

Turn in a print-out of your M-file with your homework.

- b. Run your program and generate output for the cases shown in the table on the following page. Turn in the plots generated for each case.
- c. Discuss the significance of each case.

Case	N	ω_1	a	ω_2	b
1	128	0.44178647	0.0	-	0.0
2	16	0.41724277	0.0	-	0.0
3	128	0.41724277	0.0	-	0.0
4	128	0.41724277	0.1	0.78539816	0.0
5	128	0.41724277	0.1	0.44178647	0.0
6	128	0.41724277	0.1	0.78539816	0.05
7	128	0.41724277	0.1	0.78539816	0.2