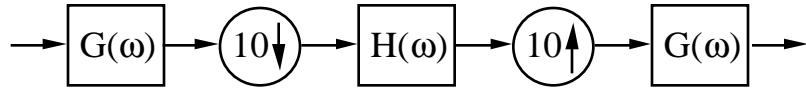


1. For each signal $x(t)$ given in parts a - c below, do the following:

- Find an expression for its CTFT $X(f)$. (Use transform relations including comb function and the results of previous parts wherever possible.)
- Carefully sketch $X(f)$.

2. A zero DC square wave with period T sec. and 50% duty cycle is filtered with an ideal low pass analog filter with cutoff at f_c kHz, and then sampled with an ideal sampler at a rate of 8 kHz, filtered with a digital filter having the frequency response $H(\omega)$ shown below, and then reconstructed as an analog signal $y(t)$ with an ideal D/A convertor with a cutoff frequency of 4 kHz.

Find the output $y(t)$ for the following values of T and f_c


- $T = 0.333$ msec, $f_c = 4$ kHz
- $T = 1$ msec., $f_c = 4$ kHz
- $T = 0.4$ msec., $f_c = 8$ kHz

3. Consider the digital filter described by the following difference equation

$$y[n] = (x[n] + 2x[n-1] + x[n-2])$$

- Find a simple expression for the frequency response $H(\omega)$ of this filter.
- Sketch the magnitude of $H(\omega)$.

Now consider the following digital system,

where $H(\omega)$ is the filter from parts a and b and $G(\omega)$ is an ideal low-pass filter with a cutoff frequency of $\pi / 10$ rad/sample and unity gain in the passband.

- c. Find the overall frequency response $F(\omega)$ for this system.
- d. Sketch the magnitude of $F(\omega)$.
- e. Discuss the possible advantages of a system like that shown above compared to directly implementing a digital filter with frequency response $F(\omega)$ as a single stage.

4. A person sits right in front of a microphone and speaks into it. The microphone also picks up an attenuated and delayed version of this signal which is reflected from a wall located 2.5 m from the microphone. The echo is 6 dB weaker than the direct signal.

- a. Derive a CT LTI model for the channel between the speaker's mouth and the microphone that accounts for the reflected signal.
- b. Find the frequency response $G(f)$ associated with this system.
- c. Assuming ideal A/D and D/A convertors operating at a 50 kHz sampling rate, design a digital filter that will *approximately* cancel the echo. For your echo-cancelling filter, what is:
 - i. the difference equation that could be used to implement it?
 - ii. the impulse response $h[n]$?
 - iii. the frequency response $H(\omega)$?
- d. Determine the overall frequency response $D(f)$ of the CT system formed by the cascade of the room channel and your echo canceller.

5. Consider the digital stereo multiplexer discussed in class on 1/30/97.

- a. Download the M-file `stereo_mux.m` and the speech files `erf1s1t0` and `ysf1s1t0` from the web site
`http://dynamo.ecn.purdue.edu/~allebach/ee438`.
- b. Draw the block diagram of a stereo demultiplexer system that will recover the left and right channel signals $x_l[n]$ and $x_r[n]$ from the multiplexed signal $x_{\text{mux}}[n]$. Be sure to identify all parameters of your system, such as modulator frequencies, filter cutoff frequencies, etc.
- c. Write an M-file that will implement your block diagram from part a. It should take the signal `xmux` produced by the M-file `stereo_mux.m`, and generate from it the original signals `x1` and `xr` (bandlimited to 3.125 kHz, of course).
- d. Turn in plots of the original and demultiplexed bandlimited left channel signals, and the spectra of these signals.
- e. Play back your reconstructed signals, and compare to the original signals. Comment on any differences that you observe between the original and demultiplexed signals.