
T						
IN	am	e:				

- You have 75 minutes to work the following five problems.
- Be sure to show all your work to obtain full credit.
- The exam is closed book and closed notes. However, you may bring with you 2 sheets of formulas handwritten on both sides of one 8.5x11 in. sheet of paper, readable by the unaided eye.
- Calculators are permitted.
- 1. (20 pts.) A signal x[n] has Z transform $X(z) = \frac{2}{(1 0.5z^{-1})(1 + z^{-1})}$, 0.5 < |z| < 1. Find x[n].

2. (20 pts.) The output $y[n] = \frac{1}{2} \left[\left(\frac{1}{2} \right)^n + \left(-\frac{1}{2} \right)^n \right] u[n]$ is observed from a LTI DT system described by the difference equation $y[n] = x[n] - \frac{1}{2}y[n-1]$. Find a simple expression for the input x[n] that generated this output.

- 3. (20 pts.) Consider the signal x[n] shown below.
 - a. Find a simple closed form expression for the 60 point DFT X[k] of this signal.
 - b. Sketch X[k].

4. (20 pts.) Derive the complete flow diagram for a 6 point FFT. Be sure to specify all twiddle factors.

5. (20 pts.) Compute the circular convolution with period 8 of the following two signals:

n	0	1	2	3	4	5	6	7
$x_1[n]$	1	2	3	4	5	5	5	5
$x_2[n]$	1	1	-1	-1	0	0	0	0

1. _____

2. _____

3.

4.

5. _____

Total _____