ECE 438 Exam No. 3 Spring 2018

- You have 50 minutes to work the following four problems.
- Be sure to show all your work to obtain full credit.
- The exam is closed book and closed notes.
- Calculators are **not** permitted.
- 1. (25 pts.) Consider a random variable X with density function

$$f_{X}(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & \text{else} \end{cases}.$$

a. (9) Find the mean and variance of X.

Suppose we generate a new random variable Y = Q(X) by quantizing X according to the following quantizer:

$$Q(x) = \begin{cases} 0, & 0 \le x < \frac{1}{2} \\ 1, & \frac{1}{2} \le x \le 1 \end{cases}$$

- b. (8) Find the mean and variance of Y.
- c. (8) Calculate the exact mean-squared quantization error $\phi = E\left\{\left(Y X\right)^2\right\}$.

ECE 438

Exam No. 3

Spring 2018

- You have 50 minutes to work the following four problems.
- Be sure to show all your work to obtain full credit.
- The exam is closed book and closed notes.
- Calculators are **not** permitted.
- 1. (25 pts.) Consider a random variable X with density function

$$f_{X}(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & \text{else} \end{cases}.$$

a. (9) Find the mean and variance of X.

Suppose we generate a new random variable Y = Q(X) by quantizing X according to the following quantizer:

$$Q(x) = \begin{cases} 0, & 0 \le x < \frac{1}{2} \\ 1, & \frac{1}{2} \le x \le 1 \end{cases}$$

- b. (8) Find the mean and variance of Y.
- c. (8) Calculate the exact mean-squared quantization error $\phi = E\{(Y-X)^2\}$.

a.
$$E[X] = \int_{-\infty}^{\infty} x f_{X}(x) dx = \int_{0}^{1} x \cdot 2x dx = \frac{2}{3} x^{3} \Big]_{0}^{1} = \frac{2}{3}$$

$$E[X^{2}] = \int_{0}^{1} x^{2} 2x dx = \frac{2}{4} x^{4} \Big]_{0}^{1} = \frac{2}{4} = \frac{1}{2}$$

$$Var(X) = E[X^{2}] - E[X]^{2} = \frac{1}{2} - \left(\frac{2}{3}\right)^{2} = \frac{1}{18}$$

$$mean(X) = E[X] = \frac{2}{3}$$

1. (continued - 1)

b.
$$E[Y] = \int_{-\infty}^{\infty} Q(x) f_{x}(x) dx = \int_{0}^{\sqrt{2}} 2x dx + \int_{\sqrt{2}} 1 \cdot 2x dx =$$

$$= x^{2} \int_{\sqrt{2}} = 1 - \frac{1}{4} = \frac{3}{4}$$

$$E[Y^{2}] = \int_{-\infty}^{\infty} Q^{2}(x) f_{x}(x) dx = \int_{0}^{\sqrt{2}} 2x \cdot dx + \int_{0}^{1} 1 \cdot 2x \cdot dx = \frac{3}{4}$$

$$Var(Y) = E[Y^{2}] - E[Y]^{2} = \frac{3}{4} - (\frac{3}{4})^{2} = \frac{3}{16}$$

$$mean(Y) = E[Y] = \frac{3}{4}$$

C.
$$\phi = E[(Y-x)^2] = E[Y^2 - 2xY + x^2] = E[Y^2] - 2E[xY] + E[x^2]$$

$$E[xY] = \int_{-\infty}^{\infty} x \cdot Q(x) f_x(x) dx = \int_{-\infty}^{Y_2} x \cdot 0 \cdot 2x dx + \int_{-\infty}^{Y_2} x \cdot 1 \cdot 2x dx = \frac{2}{3} x^3 \Big]_{Y_3}^{Y_3} = \frac{2}{3} (1 - \frac{1}{8}) = \frac{7}{12}$$

$$\phi = E[Y^2] + E[x^2] - 2 \cdot E[xY] = \frac{3}{4} + \frac{1}{2} - 2 \cdot \frac{7}{12} = \frac{9 + 6 - 14}{12} = \frac{1}{12}$$

2. (25) Let X[n] be a sequence of identically distributed, independent random variables with mean zero and variance unity.

Suppose that this sequence is processed with the following filter to generate the output sequence Y[n]:

$$y[n] = \frac{1}{2}y[n-1] + x[n]$$

- a. (3) Find the mean of the output sequence Y[n].
- b. (12) Find the cross-correlation $r_{XY}[n]$ between X and Y.
- c. (10) Find the autocorrelation $r_{yy}[n]$ of the output Y.

```
ECE438 Exam3 Solution
2
                          (a)
                                                                                                                 Yin] = = Tin-1) + xin]
                                                                                                                        Yin] = I hin-k] XIK]
                                                                                                       E[YCn]] = E { & hcn-k]xck]}
                                                                                                                                                                          = Zhon-KJE[XCK]] = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                  I pts
                           (b) r_{xx}(n_1,n_2) = E[Xtn_1]x[n_2]
                                                                                                                                          because xon) is independent and identically distributed
                                                                                          r_{xx}(n_1, n_2) = \begin{cases} E[x^2 c n_1] \cdot E[x c n_2] \end{cases} \quad n_1 \neq n_2
r_{xx}(n_1, n_2) = \begin{cases} E[x^2 c n_2] \cdot E[x c n_2] \end{cases} \quad n_1 = n_2
                                                                                                                                                                                                                                                                                     1 pts
                                                                                           \frac{1}{2} \int_{X_{\lambda}} \int_{X_{
                                                                                      rxy [n] = h[n] * rxx [n]
rxy [n] = h[n] * J[n]
                                                                                                                                                                                                                                                                                            I pts
                                                                                                                                     = h = h = (\frac{1}{2})^n u = n, e = h = \frac{1}{2} Apts
                                                                                                                                                                                                                                                                                                                                                       includes the unit circle
                                                                                                                                                    See following page for
                                                                                                                                                    additional detail on how
                                                                                                                                                   h[n] is obtained
                                                                                        ryyon) = hon] + rxyon] = hon) + ho-n]
                                                                                                                                                                                                                                                                                                                                                                                                                                               STQ Z
                        (c)
                                                                                                                                               = (\frac{1}{2})^n u[n] * (\frac{1}{2})^{-n} u[-n]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Spts
                                                                                            ryyon]
                                                                                                                                                                                                                                                                                                                                                                                                                        Note that meaning
                                                                                 hcn]
                                                                                                                                                                                                                                                                                                                                                                                                                         of indices n and k
                                                                                                                                                                                                                                                                                                                                                                                                                         are switched here.
                                                                                                                                                                                                                                                                                                                                                                                                              See following page for more
                                                                                                                                                                                                                                                                                                                                                                                                              formal derivation of r_YY[n]
```

Derivation of impulse response h[n] **for filter**

Filter equation: $y[n] = \frac{1}{2}y[n-2] + x[n]$

$$\Rightarrow Y(z) = \frac{1}{2}Y(z)z^{-1} + X(z).$$

Rearranging, we get

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - \frac{1}{2}z^{-1}}.$$

We assume a casual filter; so h[n] = 0, n < 0, and $ROC_{H(z)} = \left\{ z : \left| z \right| > \frac{1}{2} \right\}$

We can find inverse transform from the Formula sheet as $h[n] = \left(\frac{1}{2}\right)^n u[n]$.

Computation of $r_{yy}[n]$

We can note from class that if a linear, time-invariant filter has an input that is widesense stationary, then the output will be wide-sense stationary; and $r_{yy}[n] = h[n] * r_{xy}[-n]$. That is we time-reverse $r_{xy}[n]$, and then filter it.

From the above, we have that

$$\begin{split} r_{yy}[n] &= h[n] * h[-n] \\ &= \sum_{k=-\infty}^{\infty} h[n-k] h[-k] \\ &= \sum_{k=-\infty}^{\infty} \left(\frac{1}{2}\right)^{n-k} u[n-k] \left(\frac{1}{2}\right)^{-k} u[-k] \\ &= \sum_{k=-\infty}^{\min(0,n)} \left(\frac{1}{2}\right)^{n-k} \left(\frac{1}{2}\right)^{-k} \\ &= \left(\frac{1}{2}\right)^{n} \sum_{k=-\infty}^{\min(0,n)} \left(\frac{1}{4}\right)^{-k} \end{split}$$

Let's first consider the case where $n \ge 0$. Then we have

$$r_{yy}[n] = \left(\frac{1}{2}\right)^n \sum_{k=-\infty}^0 \left(\frac{1}{4}\right)^{-k}$$
$$= \left(\frac{1}{2}\right)^n \sum_{k=0}^\infty \left(\frac{1}{4}\right)^k$$
$$= \left(\frac{1}{2}\right)^n \frac{1}{1 - \frac{1}{4}}$$
$$= \frac{4}{3} \left(\frac{1}{2}\right)^n$$

But, we know that $r_{yy}[n] = r_{yy}[-n]$. So we obtain

$$r_{yy}[n] = \frac{4}{3} \left(\frac{1}{2}\right)^{|n|}$$

We can also get the result for n < 0 by solving

$$r_{yy}[n] = \left(\frac{1}{2}\right)^n \sum_{k=-\infty}^n \left(\frac{1}{4}\right)^{-k}$$
.

But it is a lot more work.

3. (25) Consider the discrete-time signal

$$s[n] = \begin{cases} \cos(\pi n/10), & n < 0 \\ \cos(\pi n/2), & n \ge 0 \end{cases}.$$

Define the short-time discrete-time Fourier transform (STDTFT) as

$$\tilde{S}(\omega,n) = \sum_{k=-\infty}^{\infty} s[k]w[n-k]e^{-jwk} ,$$

where the window function is given by

$$w[n] = \begin{cases} 1, & |n| < 10 \\ 0, & \text{else} \end{cases}.$$

- a. (18) Find simple closed form expressions for $\tilde{S}(\omega, n)$ for the three values of n = -20,0,20.
- b. (7) Sketch $|\tilde{S}(\omega, n)|$ for $0 \le \omega \le \pi$ and for all n. Be sure to label and dimension all important quantities.

Prob. 3.

a. (18) Find simple closed form expressions for $\tilde{S}(w,n)$ for the three values of n=-20,0,20.

(i) If n < -10,

$$x[n] = \cos\left(\frac{\pi n}{10}\right)$$

$$\tilde{S}(w, n) = \sum_{k} \cos\left(\frac{\pi k}{10}\right) w[n - k] e^{-jwk}$$

The following DTFT property and pair are used.

$$x[n]y[n] < \frac{DTFT}{2\pi} > \frac{1}{2\pi} \int_{-\pi}^{\pi} X(w - \mu)Y(\mu)d\mu$$

$$\cos\left(\frac{\pi n}{10}\right) < \frac{DTFT}{2\pi} > \pi \left(\delta\left(w - \frac{\pi}{10}\right) + \delta\left(w + \frac{\pi}{10}\right)\right), -\pi < w < \pi, period = 2\pi$$

Let $w'[k] = w[n-9] = \begin{cases} 1, & 0 \le n \le 18 \\ 0, & \text{else} \end{cases}$

DTFT of w'[k] is $psinc_{19}(w)e^{-jw(19-1)/2}$, or $psinc_{19}(w)e^{-jw9}$

Then, by the shift property,

$$w[k] < \frac{DTFT}{} > psinc_{19}(w)$$

Noting that w[n-k] = w[k-n].

$$w[k-n] < \frac{DTFT}{} > psinc_{19}(w)e^{-jwn}$$

Hence,

$$\begin{split} \tilde{S}(w,n) &= DTFT \left\{ \cos \left(\frac{\pi k}{10} \right) w[n-k] \right\} \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \pi \left(\delta \left(w - \mu - \frac{\pi}{10} \right) + \delta \left(w - \mu + \frac{\pi}{10} \right) \right) p sinc_{19}(\mu) e^{-j\mu n} d\mu \\ &= \frac{1}{2} \left(p sinc_{19} \left(w - \frac{\pi}{10} \right) e^{-j\left(w - \frac{\pi}{10} \right) n} + p sinc_{19} \left(w + \frac{\pi}{10} \right) e^{-j\left(w + \frac{\pi}{10} \right) n} \right) \end{split}$$

When n = -20,

$$\tilde{S}(w, -20) = \frac{1}{2} \left(p sinc_{19} \left(w - \frac{\pi}{10} \right) e^{-j \left(w - \frac{\pi}{10} \right) (-20)} + p sinc_{19} \left(w + \frac{\pi}{10} \right) e^{-j \left(w + \frac{\pi}{10} \right) (-20)} \right)$$

(ii) If n > 10,

$$x[n] = \cos\left(\frac{\pi n}{2}\right)$$

Similarly to (i),

$$\tilde{S}(w,n) = \sum_{k} \cos\left(\frac{\pi n}{2}\right) w[n-k] e^{-jwk}
= DTFT \left\{\cos\left(\frac{\pi n}{2}\right) w[n-k]\right\}
= \frac{1}{2} \left(psinc_{19} \left(w - \frac{\pi}{2}\right) e^{-j\left(w - \frac{\pi}{2}\right)n} + psinc_{19} \left(w + \frac{\pi}{2}\right) e^{-j\left(w + \frac{\pi}{2}\right)n}\right)$$

When n = 20,

$$\tilde{S}(w,20) = \frac{1}{2} \left(p sinc_{19} \left(w - \frac{\pi}{2} \right) e^{-j \left(w - \frac{\pi}{2} \right) (20)} + p sinc_{19} \left(w + \frac{\pi}{2} \right) e^{-j \left(w + \frac{\pi}{2} \right) (20)} \right)$$

(iii) If n = 0,

$$\begin{split} \tilde{S}(w,0) &= \sum_{k} x[k]w[-k]e^{-jwk} \\ &= \sum_{k} x[k]w[k]e^{-jwk} \text{ (by symmetry)} \\ &= \sum_{k=-9}^{-1} \cos\left(\frac{\pi n}{10}\right)e^{-jwk} + \sum_{k=0}^{9} \cos\left(\frac{\pi n}{2}\right)e^{-jwk} \\ &= \left(\sum_{k=-9}^{0} \cos\left(\frac{\pi n}{10}\right)e^{-jwk} - 1\right) + \sum_{k=0}^{9} \cos\left(\frac{\pi n}{2}\right)e^{-jwk} \\ &= \sum_{k} \cos\left(\frac{\pi n}{10}\right)w_{1}[-k]e^{-jwk} + \sum_{k} \cos\left(\frac{\pi n}{2}\right)w_{1}[k]e^{-jwk} - 1 \end{split}$$

where

$$w_1[k] = \begin{cases} 1, 0 \le k \le 9 \\ 0, & \text{else} \end{cases}$$

$$w_1[k] < \frac{DTFT}{} > \text{psinc}_{10}(w)e^{-jw\frac{9}{2}}$$

$$w_1[-k] < \frac{DTFT}{} > \text{psinc}_{10}(-w)e^{jw\frac{9}{2}}$$

$$= \text{psinc}_{10}(w)e^{jw\frac{9}{2}}$$

Therefore,

$$\begin{split} \tilde{S}(w,0) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \pi \left(\delta \left(w - \mu - \frac{\pi}{10} \right) + \delta \left(w - \mu + \frac{\pi}{10} \right) \right) p sinc_{10}(\mu) e^{-j\mu \frac{9}{2}} d\mu \\ &\quad + \frac{1}{2\pi} \int_{-\pi}^{\pi} \pi \left(\delta \left(w - \mu - \frac{\pi}{2} \right) + \delta \left(w - \mu + \frac{\pi}{2} \right) \right) p sinc_{10}(\mu) e^{-j\mu \frac{9}{2}} d\mu - 1 \\ &= \frac{1}{2} \left(p sinc_{10} \left(w - \frac{\pi}{10} \right) e^{-j\left(w - \frac{\pi}{10}\right)\left(-\frac{9}{2}\right)} + p sinc_{10} \left(w + \frac{\pi}{10} \right) e^{-j\left(w + \frac{\pi}{10}\right)\left(-\frac{9}{2}\right)} \right) \\ &\quad + \frac{1}{2} \left(p sinc_{10} \left(w - \frac{\pi}{2} \right) e^{-j\left(w - \frac{\pi}{2}\right)\left(\frac{9}{2}\right)} + p sinc_{10} \left(w + \frac{\pi}{2} \right) e^{-j\left(w + \frac{\pi}{2}\right)\left(\frac{9}{2}\right)} \right) - 1 \end{split}$$

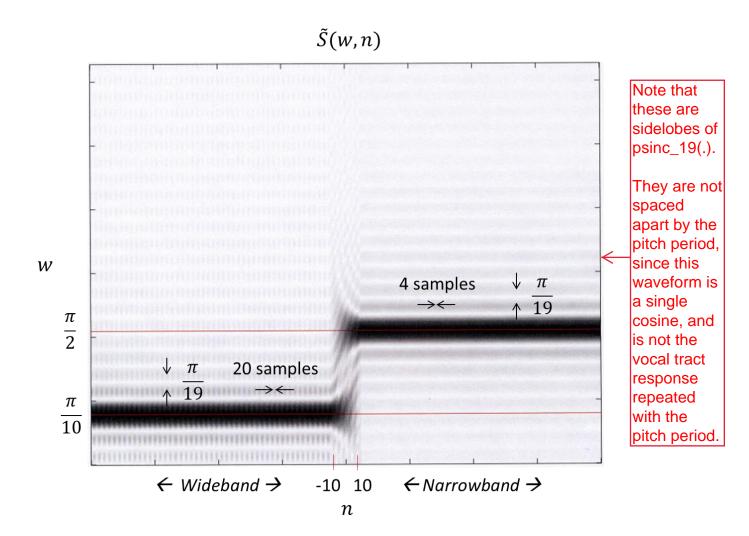
b. (7) Sketch $|\tilde{S}(w,n)|$ for $0 \le w \le \pi$ and for all n. Be sure to label and dimension all important quantities.

Notice that the window length is 19 samples and you have several shifted $psinc_{19}$, which have peaks at $w = 0, \pm \frac{\pi}{19}, \pm \frac{3\pi}{19}, \dots$

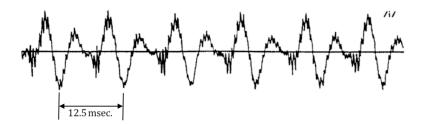
For $w = \frac{\pi}{2}$, the period of $\cos\left(\frac{\pi n}{2}\right)$ is 4 samples. The spectrogram does not show good resolution of the period of the waveform, and is effectively narrowband for n > 10.

In contrast, for $w = \frac{\pi}{10}$, the period of $\cos\left(\frac{\pi n}{10}\right)$ is 20 samples. We can see vertical striations suggesting that this is a wideband spectrogram for n < -10.

Note the spreading of the spectral peaks at the window becomes narrower on either side of the origin.



4. (25) Consider a portion of the waveform for the voiced phoneme /i/ shown below:



a. (5) From the table below, identify the first and second formant frequencies for this phoneme.

Table 3.2 Average Formant Frequencies for the Vowels. (After Peterson and Barney [11].)

FORMANT FREQUENCIES FOR THE VOWELS					
Typewritten Symbol for Vowel	IPA Symbol	Typical Word	Fι	F ₂	F ₃
IY I E AE UH A W U OOR	Wr CCovani	(beet) (bit) (bet) (bat) (but) (hot) (bought) (foot) (boot) (bird)	270 390 530 660 520 730 570 440 300 490	2290 1990 1840 1720 1190 1090 840 1020 870 1350	3010 2550 2480 2410 2390 2440 2410 2240 2240 1690

Consider the STDTFT of the speech waveform defined as

$$\tilde{S}(\omega,n) = \sum_{k=-\infty}^{\infty} s[k] w[n-k] e^{-jwk} .$$

Assume that the speech waveform shown above is sampled at an 8 kHz rate.

- b. (5) Choose an appropriate length for the window function w[n] that will yield a *narrowband* spectrogram.
- c. (5) Sketch what this narrowband spectrogram would look like. Be sure to label and dimension all important quantities.
- d. (5) Choose an appropriate length for the window function w[n] that will yield a *wideband* spectrogram.
- e. (5) Sketch what this wideband spectrogram would look like. Be sure to label and dimension all important quantities.

4. (continued - 1)

Axis Label: (1pt)