ECE 438

Exam No. 1

Spring 2016

- You have 50 minutes to work the following four problems.
- Be sure to show all your work to obtain full credit.
- The exam is closed book and closed notes.
- Calculators are not permitted.
- 1. (25 pts.) Consider the linear, time-invariant system defined by the difference equation

$$y[n] = \frac{1}{4}x[n+1] + \frac{1}{2}x[n] + \frac{1}{4}x[n-1].$$

a. (9) Find the response of this system to the input

$$x[n] = \begin{cases} 1, & |n| \le 2 \\ 0, & \text{else} \end{cases}.$$

- (9) Find a simple expression for the frequency response $H(\omega)$ of this system.
- c. (7) Based on your answer to part (a), find simple expressions for the magnitude $|H(\omega)|$ and phase $/H(\omega)$ of the frequency response of this system.

9.

n	yeni	4xcn+1]	1/2 X [n]	4XEN-U
-4	0	0	0	0
-3	4	1/4	0	0
-2	3/4	4	1/2	84
-1	1	1/4	1/2	4
0	1	4	1/2	4
	1	1/4	1/2	/4
2	3/4	D	1/2	1/4
3	1/4	0	0	1/4
4	0	0	0	O

Therefore,
$$y[n] = \begin{cases} 4, & n=-3,3 \\ \frac{3}{4}, & n=-2,2 \\ 1, & n=-1,0,1 \\ 0, & otherwise \end{cases}$$

1. (continued)

b. Let
$$\chi(n) = e^{j\omega n}$$
, $y(n) = H(\omega)e^{j\omega n}$
 $\Rightarrow y(n) = H(\omega)e^{j\omega n} = \frac{1}{4}e^{j\omega(n+1)} + \frac{1}{4}e^{j\omega(n+1)}$
 $\Rightarrow H(\omega) = \frac{1}{4}e^{j\omega} + \frac{1}{4}e^{-j\omega}$
 $= \frac{1}{2} + \frac{1}{2}(\frac{e^{j\omega} + e^{-j\omega}}{2}) = \frac{1}{2} + \frac{1}{2}\cos(\omega)$
c.

Because H(w) is positive everywhere,

50/4 AUN 7 :

$$H(W) = \frac{1}{2} + \frac{1}{2} \cos(\omega) = \cos^2(\frac{\omega}{2}) \otimes$$
 $H(\omega)$ is always positive, therefore.

 $|H(\omega)| = \cos^2(\frac{\omega}{2}) \otimes$
 $|H(\omega)| = 0 \otimes$

2. (25 pts.) Perform the convolution w[n] of the following two signals, and carefully sketch the output signal w[n].

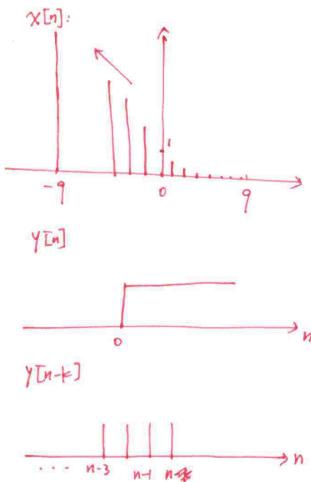
$$x[n] = \begin{cases} \left(\frac{1}{2}\right)^n, & 0 \le |n| \le 9 \\ 0, & \text{else} \end{cases}, \text{ and } y[n] = u[n].$$

2)
$$-9 \le n < 9$$
:
 $W[n] = \sum_{k=-9}^{n} \left(\frac{1}{2}\right)^{k} = \left(\frac{1}{2}\right)^{-9} \cdot \frac{1 - \left(\frac{1}{2}\right)^{n+10}}{\frac{1}{2}}$

$$= \left(\frac{1}{2}\right)^{-10} - \left(\frac{1}{2}\right)^{n} = 2^{10} - 2^{-n}$$

3)
$$N > 9$$
:
 $V[N] = \left(\frac{1}{2}\right)^{-10} = \left(\frac{1}{2}\right)^{-9}$

Plot of output signal is on next page

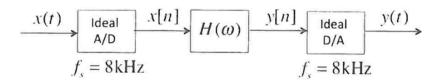


2.
$$\chi[n] = (\frac{1}{2})^n$$
, $0 \in [n] \in 9$; $\gamma[n] = w[n]$
 $w[n] = \sum_{k=1}^{\infty} \chi[k] \gamma[n-k]$.
1) $n < -9$: no everlap.
2) $-9 \le n < 9$: $w[n] = \sum_{k=1}^{\infty} (\frac{1}{2})^k = (\frac{1}{2})^{-9}$. $\frac{1 - (\frac{1}{2})^{n+10}}{\frac{1}{2}}$
 $= (\frac{1}{2})^{-10}$. $(1 - (\frac{1}{2})^{n+10})$
 $= 2^{10} - 2^{-n}$
3) $\gamma[n] > 9$: $w[n] = 2^{10} - 2^{-9}$ (constant)
 $\gamma[n] > 0$: $\gamma[n] > 0$:

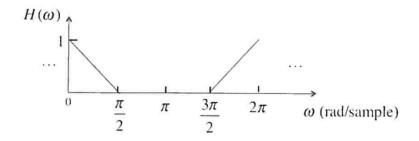
Not in Scale.

2. (continued)

3. (25) Consider the system shown below, which operates at an 8 kHz sampling rate.



Here the digital filter in the center of the system has frequency response $H(\omega)$ given below.



Suppose that the input to this system is

$$x(t) = \cos(2\pi(3000)t) + \cos(2\pi(7000)t).$$

Note that the Ideal A/D can be viewed as an ideal low pass filter with cutoff $f_c = 4 \,\mathrm{kHz}$, followed by a comb operation sampling at an $1/8000 \,\mathrm{sec}$. interval. Similarly, the Ideal D/A can be viewed as a train of sample-modulated impulses separated by an $1/8000 \,\mathrm{sec}$. interval (comb operation), followed by an ideal low pass filter with cutoff $f_c = 4 \,\mathrm{kHz}$.

- a. (8) Find a simple expression for the DTFT $X(\omega)$ of the signal x[n].
- b. (9) Find a simple expression for the DTFT $Y(\omega)$ of the signal y[n].
- c. (8) Find a simple expression for the output y(t) of the overall system.

A) after the low-pass filter

$$\chi_{f}(t) = \cos(2\pi 3000t)$$

$$\chi_{f}(f) = \frac{1}{2} \left(S(f - 3000) + S(f + 3000) \right)$$

$$\chi_{f}(w) = f_{s} \operatorname{rep}_{f_{1}} \left[\chi_{f}(f) \right] \Big|_{f = wf_{1}} = f_{s} \operatorname{rep}_{f_{1}} \left[\frac{1}{2} S(\frac{wf_{2}}{2\pi} - 3000) + \frac{1}{2} S(\frac{wf_{2}}{2\pi} + 300) \right]$$

3. (continued - 1)

$$=\frac{f_{1}}{f_{3}}\frac{2\pi}{2\pi}\cdot\frac{1}{2}\operatorname{rep}_{2\pi}\left[\delta(\omega-\frac{3\pi}{4})+\delta(\omega+\frac{3\pi}{4})\right]$$

$$=\pi\operatorname{rep}_{2\pi}\left[\delta(\omega-\frac{3\pi}{4})+\delta(\omega+\frac{3\pi}{4})\right]$$

Alternative for a)

$$2 (n) = 2 cf(t) \Big|_{t = \frac{1}{8000}n}$$

= $cos(\frac{2\pi}{8000}3000n)$
= $cos(\frac{3\pi}{4}n)$

Then using cos(won) (OTFT) TREPZT [S(w-Wo) + S(w+wo)]

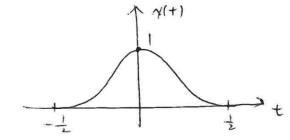
3. (continued - 2)

(25 pts) Consider the signal:

$$x(t) = \begin{cases} \frac{1}{2} \left(1 + \cos(2\pi t) \right), & |t| < \frac{1}{2} \\ 0, & \text{else} \end{cases}$$

- a) (5) Carefully sketch x(t) being careful to dimension all important quantities.
- b) (12) Find a simple closed-form expression for the CTFT X(f) of x(t). Your answer should not contain any operators.
- c) (8) Carefully sketch X(f). Be sure to dimension all important quantities.

(a)



(1) $\gamma(t) = \frac{1}{2} (1+ \cos(2\pi t)) \operatorname{rect}(t)$

$$X(f) = \left[\frac{1}{2}S(f) + \frac{1}{4}S(f-1) + \frac{1}{4}S(f+1)\right] \times \tilde{S}nc(f)$$

$$= \frac{1}{2}\tilde{S}(f) + \frac{1}{4}\tilde{S}(f-1) + \frac{1}{4}\tilde{S}(f+1) + \frac{1}{4}\tilde{S}(f+1)$$

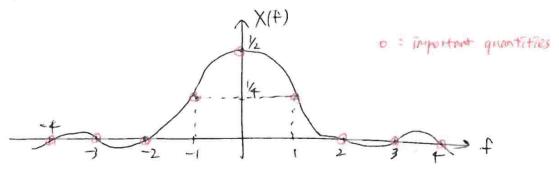
(c) Thinking that sinc(f) is 1 at f=0 and 0 at f= the

other Integers,

When
$$f = 0$$
 $\chi(f) = \frac{1}{2} + 0 + 0 = \frac{1}{2}$
 $f = 1$ $\chi(f) = 0 + 0 + 0 = 0$
 $f = 2$ $\chi(f) = 0 + 0 + 0 = 0$
 $f = 3$ $\chi(f) = 0 + 0 + 0 = 0$

4. (continued)

Also we know the function is even.



* comment: Alternatively, you can draw each since function and sum them up.