ECE 438

Exam No. 1

Spring 2010

- You have 50 minutes to work the following four problems.
- Be sure to show all your work to obtain full credit.
- The exam is closed book and closed notes.
- Calculators are **not** permitted.
- 1. (25 pts.) Consider the linear, time-invariant system defined by the difference equation

$$y[n] = x[n] - x[n-1] - y[n-1].$$

Assume that the system is initially at rest, i.e. y[n] = 0, n < 0.

a. (6) For the following input signal x[n], find the corresponding response y[n] of the system.

- b. (6) Find a simple expression for the frequency response $H(\omega)$ of this system.
- c. (6) Based on your answer to part (b), find simple expressions for the magnitude $|H(\omega)|$ and phase $|H(\omega)|$ of the frequency response of this system.
- d. (6) Based on your answer to part (c), carefully sketch the magnitude $|H(\omega)|$ and phase $|H(\omega)|$ of the frequency response of this system.
- e. (1) Is this system bounded-input-bounded-output (BIBO) stable? State why or why not.

(a)
$$y[0] = 1 - 0 - 0 = 1$$

 $y[0] = 1 - 1 - 1 = -1$
 $y[0] = 1 - 1 + 1 = 1$
 $y[0] = 1 - 1 - 1 = -1$
 $y[0] = 0 - 1 + 1 = 0$
 $y[0] = 0 - 0 + 0 = 0$

(b) Let
$$xGJ = e^{jwn}$$
, $yGnJ = H(w)e^{jwn}$
 $\Rightarrow H(w)e^{jwn} = e^{jwn} - e^{jw(n-1)} + Gw(n-1)$

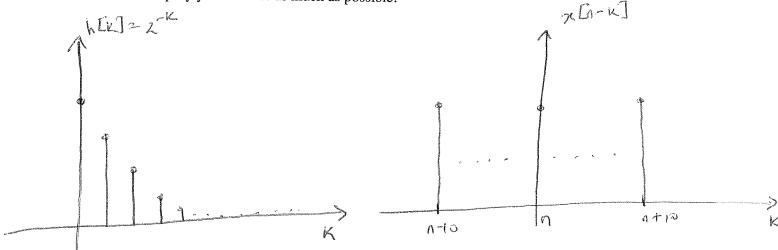
1. (continued)
$$H(w) = \frac{1 - e}{1 + e^{-jw}} = \frac{e^{-j\frac{w}{2}} \left[\frac{e^{j\frac{w}{2}} - j\frac{w}{2}}{e^{j\frac{w}{2}} + e^{j\frac{w}{2}}} \right]}$$

$$= \frac{2j}{\sqrt{3}} \frac{3in(w/2)}{(w/2)} = \frac{j \ln (\frac{w}{2})}{\sqrt{3}}$$

$$(e) |H(w)| = |H(w)|$$

2. (25 pts.) Consider a linear, shift-invariant system with impulse response $h[n] = \left(\frac{1}{2}\right)^n u[n].$ Find an expression for the response y[n] to the input $x[n] = \begin{cases} 1, & |n| \le 10 \\ 0, & \text{else} \end{cases}$ by evaluating the convolution sum $y[n] = \sum_{k=-\infty}^{\infty} h[n-k]x[k]$.

Simplify your answer as much as possible.



Case 1: n+1060 > n<-10

y[n]=0, since no overlap between h and n

Coar2:
$$n+10 \ge 0$$
 and $n-10 \le 0 \Rightarrow -10 \le n \le 10$
 $y[n] = \begin{cases} 2 \\ 1 \end{cases} \begin{cases} 2 \\ 2 \end{cases} = \frac{1-(\frac{1}{2})^{n+1}}{1-\frac{1}{2}} = 2[1-(\frac{1}{2})^{n+1}]$

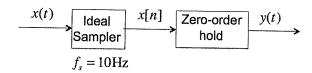
 $\frac{\text{Case 3}}{\text{yCn1}} = \frac{n+10}{100} \left(\frac{1}{2}\right)^{1/2} \left(\frac{1}{2}$

(continued)

$$\frac{1}{2} \left\{ \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right\} = \begin{cases}
0 & n < -10 \\
-10 \leq n \leq 10
\end{cases}$$

$$\left(\frac{1}{2}\right)^n \left[\frac{2}{2} - \frac{1}{2}\right]^{n+1} = \frac{1}{2} = \frac{1}{2}$$

3. (25) Consider the system shown in the block diagram below:



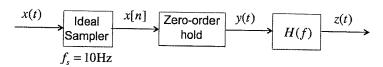
The operation of the zero-order hold unit can be described as:

$$y(t) = \sum_{n=-\infty}^{\infty} x[n] \operatorname{rect}\left(\frac{t - 0.1n - 0.05}{0.1}\right).$$

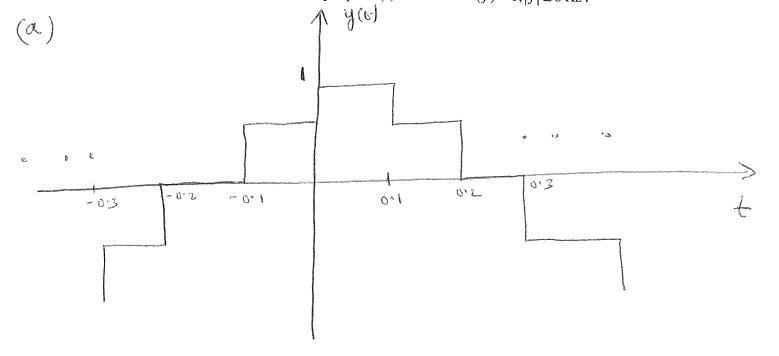
Suppose that the input to this system is $x(t) = \cos(2\pi(10/8)t)$.

- a. (8) Carefully and accurately sketch the output y(t) of the zero-order hold.
- b. (9) Find an expression for the continuous-time Fourier transform (CTFT) Y(f) of the output y(t) for the specific input $x(t) = \cos(2\pi(10/8)t)$ to the system. Your answer should be simplified as much as possible, and should not contain any operators.
- c. (4) Sketch Y(f).

Now consider placing an analog filter with frequency response H(f) at the output of the system shown above to yield the following system:



d. (4) Find the desired frequency response H(f) of the filter so that the system output $z(t) \equiv x(t)$, for any input x(t) for which $X(f) = 0, |f| \ge 5 \,\mathrm{Hz}$.



(b)
$$\chi(t) = \omega S \left(2\pi \left(\frac{1}{2} \right)^{t} \right)$$

$$\chi_{s}(t) = \underset{0:1}{\text{cumb}} \chi(t)$$

$$\chi_{r}(t) = \text{rect} \left(\frac{t - 0 \cdot 0 \cdot r}{0 \cdot 1} \right)$$

So, we have
$$y(t) = \chi_s * \chi_c(t)$$

$$\chi(f) = \frac{1}{2} \left[s(f - \frac{1}{6}) + s(f + \frac{1}{8}) \right]$$

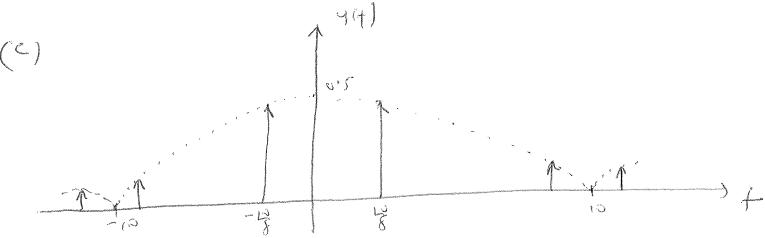
$$\chi_r(f) = \frac{1}{2} \left[s(f - \frac{1}{6}) + s(f + \frac{1}{8}) \right]$$

$$\chi_r(f) = \frac{1}{2} \left[s(f - \frac{1}{6}) + s(f + \frac{1}{8}) \right]$$

$$\chi_r(f) = 0 \text{ sinc } \left(o(f) + \frac{1}{2} - \frac{1}{2} c(f + \frac{1}{6}) + s(f + \frac{1}{8}) \right]$$

=)
$$Y(t) = x_3(t) \times r(t)$$

= $rep \left\{ \frac{1}{2} \left[s(t-1) + s(t+1) \right] sinc(o) \right\} = i^{2.17} f(o) os)$

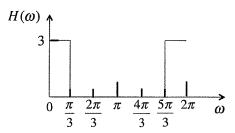


(d) H(f) = \(\frac{1}{\sine(\left)e^{-jext(\left)vir}} \) -Sef \(\sine(\left)e^{-jext(\left)vir}\) \(\frac{1}{\sine(\left)e^{-jext(\left)vir}} \) \(\frack{1}{\sine(\left)e^{-jext(\left)e^{-jext(\left)e^{-jext(\left)e^{

4. (25 pts) Consider the system shown below:

$$\xrightarrow{x[n]} \uparrow 3 \xrightarrow{y[n]} H(\omega) \xrightarrow{z[n]} \downarrow 3 \xrightarrow{w[n]}$$

Here the filter $H(\omega)$ has the frequency response:



Let uppercase symbols denote the DTFTs of their corresponding lowercase quantities.

- a) (3) Find a simple expression for $W(\omega)$ in terms of $Z(\omega)$.
- b) (3) Find a simple expression for $Z(\omega)$ in terms of $Y(\omega)$.
- c) (3) Find a simple expression for $Y(\omega)$ in terms of $X(\omega)$.
- d) (8) Combine your answers to parts (a) (c) above to find a simple expression for $W(\omega)$ in terms of $X(\omega)$.
- (8) Suppose $X(\omega)$ is given by $X(\omega) = 1 \left| \frac{\omega}{\pi} \right|$, $0 \le |\omega| \le \pi$. Sketch $X(\omega)$, $Y(\omega)$, $Z(\omega)$, and $W(\omega)$.

(a)
$$W(w) = \frac{1}{3} \stackrel{?}{=} Z(\frac{t v - 2\pi f}{3})$$

(d)
$$W(w) = \frac{1}{3} \stackrel{2}{\underset{k=0}{\text{K}}} Y(w - 2\pi k) H(w - 2\pi k)$$

= $\frac{1}{3} \stackrel{2}{\underset{k=0}{\text{K}}} X(w - 2\pi k) H(w - 2\pi k)$

W(w) = X(w)

After Simplification Specifically, since $X(\omega - 2\pi k) = X(\omega)$ for any integer k, we have $W(\omega) = X(\omega) \frac{1}{3} \sum_{k=0}^{2} H\left(\frac{\omega - 2\pi k}{3}\right)$.

But $\frac{1}{3}\sum_{k=1}^{\infty}H\left(\frac{\omega-2\pi k}{3}\right)=1$. See figure on next page.

