ECE 438

Exam No. 1

Spring 2008

- You have 50 minutes to work the following four problems.
- Be sure to show all your work to obtain full credit.
- The exam is closed book and closed notes.
- Calculators are permitted.
- 1. (25 pts.) Consider the system defined by the difference equation

$$y[n] = x[n] - x[n-1] - y[n-1].$$

- a. (2) Is this system linear? Just state "yes" or "no". You do not need to justify your answer, and you will not receive any credit for a proof of your answer.
- b. (2) Is this system time-invariant? Just state "yes" or "no". You do not need to justify your answer, and you will not receive any credit for a proof of your answer.
- c. (5) Assuming that the system is initially at rest, i.e. y[n] = 0, n < 0, find the impulse response h[n] of this system.
- d. (10) Find the frequency response of this system $H(\omega)$ by directly computing the response to the input $x[n] = e^{j\omega n}$.
- e. (6) Find simple expressions for the magnitude and phase of the frequency response of this system.
- (a) Yes
- dos Yes

T)	yIn]
	0
0	1
e	-2
2	2
3	-2
	•

(d) Let
$$x \ln 1 = e^{\frac{1}{1}\omega n}$$
, ossume $y \ln 7 = H(\omega) e^{\frac{1}{1}\omega n}$

$$H(\omega) e^{\frac{1}{1}\omega n} = e^{\frac{1}{1}\omega n} - e^{\frac{1}{1}\omega(n-1)} - e^{\frac{1}{1}\omega(n-1)} H(\omega)$$

$$H(\omega) e^{\frac{1}{1}\omega n} = e^{\frac{1}{1}\omega n} - e^{\frac{1}{1}\omega n} e^{\frac{1}{1}\omega n} - e^{\frac{1}{1}\omega n} e^{\frac{1}{1}\omega n} H(\omega)$$

$$H(\omega) (1 + e^{-\frac{1}{1}\omega}) = 1 - e^{-\frac{1}{1}\omega}$$

$$H(\omega) = \frac{1 - e^{-\frac{1}{1}\omega}}{1 + e^{-\frac{1}{1}\omega}} (e^{\frac{1}{1}\omega n} - e^{-\frac{1}{1}\omega n}) \cdot \frac{1}{2\frac{1}{1}}$$

$$= \frac{1 - e^{-\frac{1}{1}\omega}}{1 + e^{-\frac{1}{1}\omega}} (e^{\frac{1}{1}\omega n} - e^{-\frac{1}{1}\omega n}) \cdot \frac{1}{2\frac{1}{1}}$$

$$= \frac{1 - e^{-\frac{1}{1}\omega}}{1 + e^{-\frac{1}{1}\omega}} (e^{\frac{1}{1}\omega n} + e^{-\frac{1}{1}\omega n}) \cdot \frac{1}{2\frac{1}{1}}$$

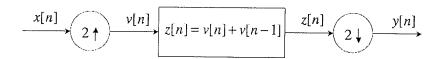
$$= \frac{\sin(\frac{\omega}{2})}{\frac{1}{1}(\cos(\frac{\omega}{2}))}$$

$$= \frac{\sin(\frac{\omega}{2})}{(\cos(\frac{\omega}{2}))}$$

$$= \frac{1 \sin(\frac{\omega}{2})}{(\cos(\frac{\omega}{2}))}$$

$$= \frac{1 \sin(\frac{\omega}{2})}{1 + \cos(\frac{\omega}{2})} = \frac{1 \cos(\frac{\omega}{2})}{1 + \cos(\frac{\omega}{2})}$$

2. (25 pts.) Consider the system shown in the block diagram below.



- a. (10) For the signal x[n] = (3-n)(u[n] u[n-3]), sketch x[n], v[n], and y[n].
- b. (15) Using transform relations, express the entire system above in the DTFT domain, i.e. find expressions for $V(\omega)$ in terms of $X(\omega)$, for $Z(\omega)$ in terms of $V(\omega)$, for $Y(\omega)$ in terms of $Z(\omega)$, and finally for $Y(\omega)$ in terms of $Z(\omega)$. Each expression should be simplified as much as possible.

(a)
$$x[n] = (3-n)(utn] - utn-31)$$

$$= (3-n)(s[n] + s[n-1] + s[n-2])$$

$$= 3s[n] + 2s[n-1] + s[n-2]$$

$$x[n]$$

$$x[n] = (3-n)(utn] - utn-31)$$

$$= (3-n)(s[n] + s[n-1] + s[n-2])$$

$$x[n] = (3-n)(s[n] + s[n] + s[n-2])$$

$$x[n] = (3-n)(s[n] + s[n] + s[n] + s[n-2])$$

$$x[n] = (3-n)(s[n] + s[n] +$$

(b)
$$V(\omega) = X(2\omega)$$

$$Z(\omega) = V(\omega) + e^{-j\omega}V(\omega)$$

$$= V(\omega)(1+e^{-j\omega})$$

$$= X(2\omega)(1+e^{-j\omega})$$

$$Y(\omega) = \frac{1}{2}\sum_{k=0}^{1}Z(\frac{\omega-2\pi k}{2})$$

$$= \frac{1}{2}\sum_{k=0}^{1}X(\frac{2(\frac{\omega-2\pi k}{2})}{2})(1+e^{-j(\frac{\omega-2\pi k}{2})})$$

$$= \frac{1}{2}\left[X(\omega)(1+e^{-j\frac{\omega}{2}}) + X(\omega-2\pi)(1+e^{-j(\frac{\omega-2\pi}{2})})\right]$$

$$X(\omega-2\pi) = X(\omega)$$

$$= \frac{1}{2}\left[X(\omega) + e^{-j\frac{\omega}{2}}X(\omega) + X(\omega) + e^{-j\frac{\omega}{2}}X(\omega)\right]$$

$$= \frac{1}{2}\left[X(\omega) + X(\omega) + e^{-j\frac{\omega}{2}}X(\omega) - e^{-j\frac{\omega}{2}}X(\omega)\right]$$

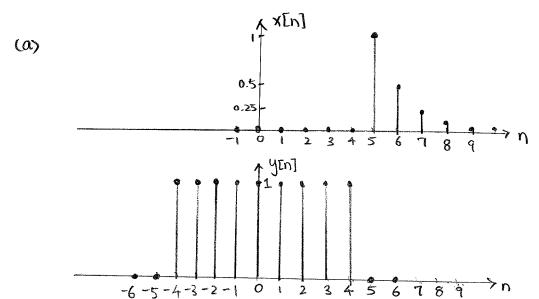
$$Y(\omega) = X(\omega)$$

$$= X(\omega)$$

3. (25) Consider the two signals

$$x[n] = 2^{-(n-5)}u[n-5]$$
$$y[n] = u[n+4] - u[n-5]$$

- a. (4) Carefully sketch each of these signals.
- b. (3) Find the energy E_x for x[n].
- c. (2) Find the average value A_y for y[n].
- d. (16) Compute the convolution z[n] = x[n] * y[n] for these two signals, and sketch your result.



(b)
$$E_{x} = \frac{2}{n^{2}-\infty} |x[n]|^{2}$$

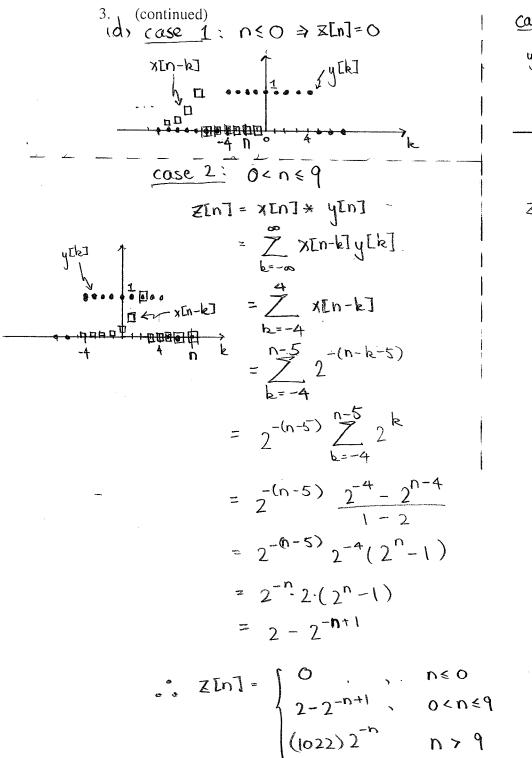
$$= \frac{2}{n-5} |(\frac{1}{2})^{n-5}|^{2} = \frac{2}{n-5} (\frac{1}{2})^{2(n-5)} = \frac{2}{n-5} (\frac{1}{4})^{n-5}$$

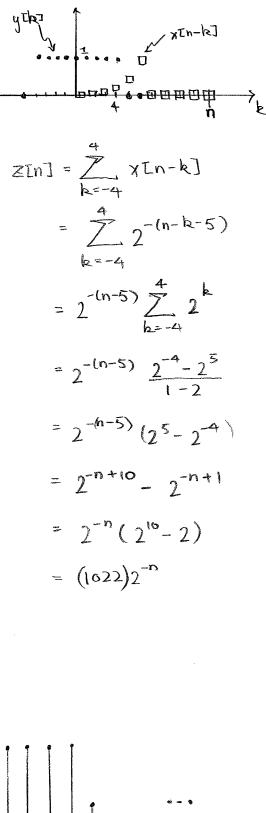
$$= \frac{2}{n-5} |(\frac{1}{4})^{m}|^{2} = \frac{1}{1-\frac{1}{4}} = \frac{4}{3}$$

$$= \frac{4}{1-\frac{1}{4}} = \frac{4}{3}$$

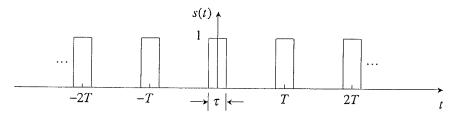
$$y_{avg} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

$$= \lim_{N \to \infty} \frac{1}{2N+1} \cdot (9)$$





4. (25 pts) Consider the waveform s(t) shown below.



- a) (5) Using the replication operator and the rect function, write a compact expression for s(t).
- b) (7) Find a simple expression for the CTFT S(f) of s(t) based on your answer to part (a) above. Your final answer should not include any operators, such as rep or comb.
- c) (3) Carefully sketch S(f), being sure to show all dimensions of its features in terms of the parameters τ and T.

Suppose that we use s(t) to generated a sampled version $x_s(t)$ of an arbitrary signal x(t) according to

$$x_s(t) = s(t)x(t)$$

- d) (2) Draw a "typical" waveform x(t), and sketch what $x_s(t)$ would look like.
- e) (5) Using transform relations, find a simple expression for the CTFT $X_s(f)$ of $x_{c}(t)$ in terms of the CTFT X(f) for x(t). Your final answer should not include any operators, such as rep, comb, or convolution.
- f) (3) Assuming that $X(f) = (1 |f|/W) \operatorname{rect}(f/(2W))$, where W < 1/(2T), sketch $X_s(f)$.

(a)

Starting that
$$X(f) = (1 - |f|/W) \operatorname{rect}(f/(2W))$$
, where $W < 1/W$

sketch $X_s(f)$.

$$\operatorname{rect}(t/T) = \begin{cases} 1 & |t| < \frac{\pi}{2} \\ 0 & \text{else} \end{cases}$$

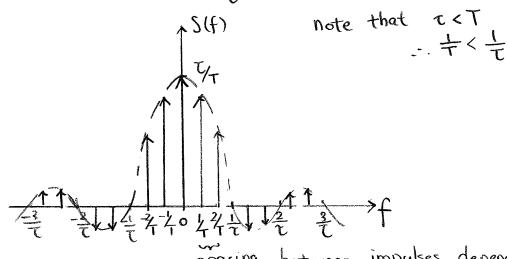
$$\Rightarrow s(t) = \operatorname{rep}_T \left[\operatorname{rect}(t/T) \right]$$

(b)
$$S(f) = \frac{1}{T} comb_{\frac{1}{T}} [\tau sinc(\tau f)]$$

$$= \frac{\tau}{T} \sum_{k=-\infty}^{\infty} sinc(\tau \frac{k}{T}) f(f - \frac{k}{T})$$

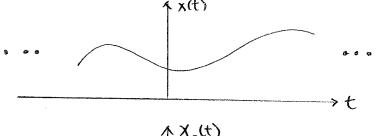
(c)
$$sinc(tf) = \frac{sin\pi tf}{\pi tf}$$

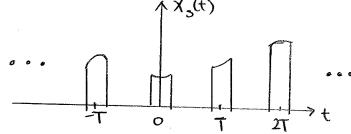
Zero-crossings:
$$\pi Tf = m\pi$$
, $m = \pm 1, \pm 2, \dots$
 $f = \frac{m}{\tau}$



spacing between impulses depend on T

(q)





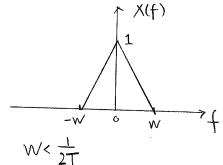
(e)
$$X_s(t) = S(t) X(t)$$

$$X_{s}(f) = S(f) * \chi(f)$$

$$= \left[\frac{\tau}{T} \sum_{k=-\infty}^{\infty} \operatorname{sinc}(\tau \frac{k}{T}) S(f - \frac{k}{T})\right] * \chi(f) \quad \text{is linear}$$

$$= \frac{\tau}{T} \sum_{k=-\infty}^{\infty} \operatorname{sinc}(\tau \frac{k}{T}) \left[S(f - \frac{k}{T}) * \chi(f) \right] = \frac{\tau}{T} \sum_{k=-\infty}^{\infty} \operatorname{sinc}(\tau \frac{k}{T}) \chi(f - \frac{k}{T})$$

(f)
$$\chi(f) = (1 - |f|/w) \operatorname{rect}(f/2w)$$



given $W < \frac{1}{2T}$

