Name:						

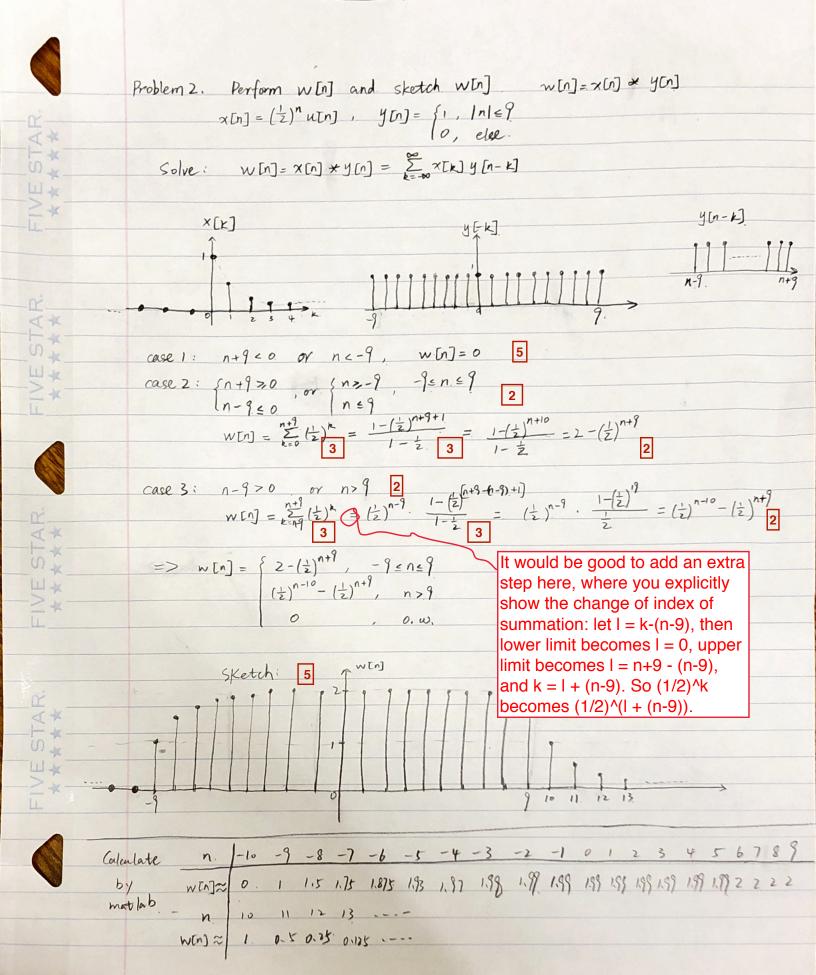
ECE 438 Exam No. 1 Fall 2018

- You have 50 minutes to work the following four problems.
- Be sure to show all your work to obtain full credit.
- The exam is closed book and closed notes.
- Calculators are **not** permitted.
- 1. (25 pts.) Consider the linear, time-invariant system defined by the difference equation

$$y[n] = \frac{1}{3} \{x[n] + x[n-1] + x[n-2] \}.$$

a. (9) Find the response of this system to the input

$$x[n] = \begin{cases} 1, & 0 \le n \le 2 \\ 0, & \text{else} \end{cases}.$$


- b. (9) Find a simple expression for the frequency response $H(\omega)$ of this system.
- c. (7) Based on your answer to part (b), find a simple expression for the magnitude $|H(\omega)|$ of the frequency response of this system.

1. (continued)

(9) a.
$$y[n] = \frac{1}{3} \left\{ S[n] + S[n-1] + S[n-2] + S[n-2$$

2. (30 pts.) Perform the convolution w[n] of the following two signals, and carefully sketch the output signal w[n]. Your solution for w[n] should be an analytical expression or expression(s) for the signal.

$$x[n] = \left(\frac{1}{2}\right)^n u[n]$$
, and $y[n] = \begin{cases} 1, & |n| \le 9 \\ 0, & \text{else} \end{cases}$.

- 3. (20) Consider the continuous-time signal $x(t) = \cos(2\pi(4000)t) + \cos(2\pi(8000)t)$.
 - a. (6) Find a simple expression for the CTFT X(f) of x(t), and sketch it.

Suppose that we sample x(t) at a 10 kHz sampling rate to generate the continuous-time sampled signal $x_s(t) = \text{comb}_T [x(t)]$, where T = 1/10000 sec. is the sampling interval.

b. (8) Find a simple expression for the CTFT $X_s(f)$ of $x_s(t)$, and sketch it. Your final answer should not contain any operators.

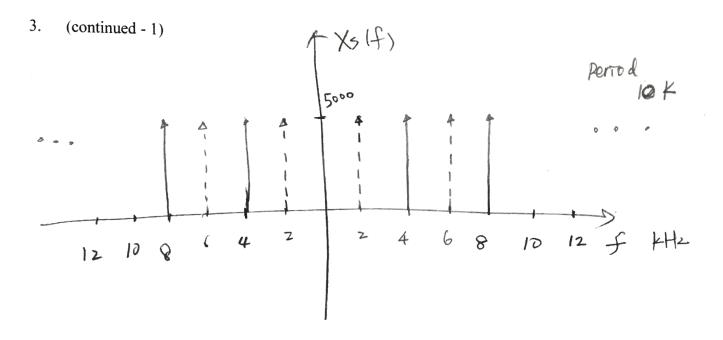
Now, suppose that we input $x_s(t)$ to an ideal low-pass reconstruction filter with frequency response $H_r(f) = T \cdot \text{rect}(Tf)$.

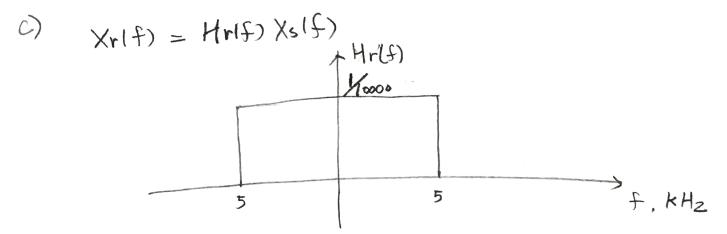
c. (6) Find a simple expression for the output $x_r(t)$ from the reconstruction filter. Your final answer should not contain any operators.

a)
$$\cos(2\pi f_0 t) \stackrel{\text{CTFT}}{=} \frac{1}{2} \{ \delta(f - f_0) + \delta(f + f_0) \}$$

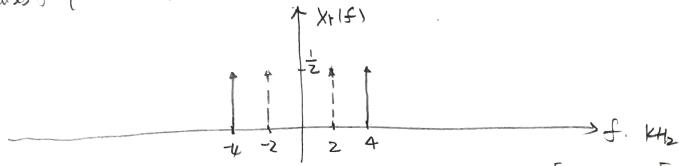
Thus.

$$\times (f) = \frac{1}{2} \{ \delta(f - k_0 \omega) + \delta(f + k_0 \omega) \} + \frac{1}{2} \{ \delta(f - k_0 \omega) + \delta(f + k_0 \omega) \} \}$$

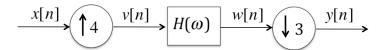

$$+ \chi(f)$$

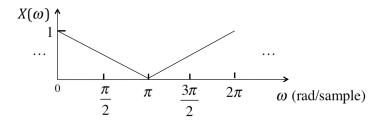

$$+$$

Thus.
$$\times_{S}(f) = \frac{1}{7} \text{ rep}_{\frac{1}{7}} \left[\times_{\frac{1}{7}} (f) \right]$$

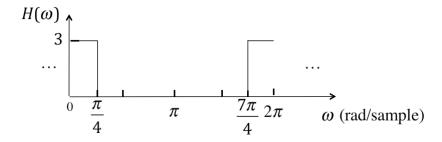

$$= (0000 \text{ rep}_{\frac{10000}{10000}} \left\{ \frac{1}{2} (f - 4000) + \sigma (f + 4000) + \sigma (f - 8000) + \sigma (f + 8000) \right\}$$

$$= 5000 \text{ rep}_{\frac{10000}{10000}} \left\{ \sigma (f - 4000) + \sigma (f + 4000) + \sigma (f - 8000) + \sigma (f + 8000) \right\}$$


After the low pass filter, only base band survive, and impulses frequence < 5 kHz survives.


 $Xr(f) = Hr(f) \cdot Xs(f) = \frac{1}{2} \int_{-2000}^{\infty} f(f-2000) + \frac{1}{2} \int_{-20$

 $\chi_{r}(t) = \cos(2\pi(2000t)) + \cos(2\pi(4000)t)$

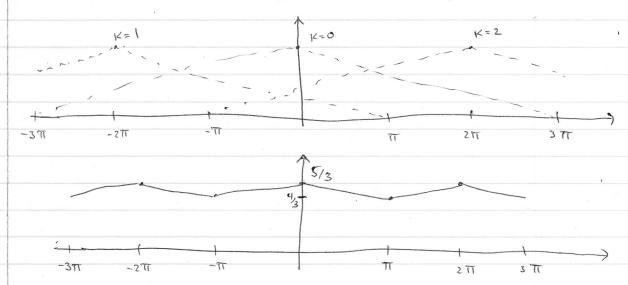

4. (25 pts) Consider the system shown below:

The DTFT of the input is given by:

The frequency response of the filter is given by:

a) (18) Carefully sketch the DTFTs $V(\omega)$, $W(\omega)$, $Y(\omega)$.

.


- b) (3) Describe the overall effect that this system has on its input.
- c) (4) For the given $X(\omega)$, would the system work, if we first downsampled by $3\times$, filtered with a lowpass filter, and then upsampled by $4\times$? Why or why not?

Question 4 y[n] V[n] X[n] H(w) X(w) Y(w): ... 77--2'77 1 V(w) V(w) = X(4w) V(0) = X(0) $V(\frac{\pi}{4}) = \chi(\pi)$ -17 -2TT $V(\frac{\pi}{2}) = X(2\pi)$ TT 3 H(w) W(w) = V(w) . H(w) -27 w(w) $W(\sqrt[M]{3}) + W(\frac{W+2\Pi}{3}) + W(\frac{W+4\Pi}{3})$ K=0 V=0 x=2 K=1 311 511 1311 271 411 677 -517 6TT -491 -271

b) This system changes sampling frequency of the input signal
$$f_{s_{new}} = \frac{4}{3} f_s$$

c) No, the system wouldn't work.

If we try to downsample the given signal K(w) by 3 times, there would be aliasing, because the signal wasn't prefittered

