Systems

Linear, ty

Time-Invariance

Franke 3

y (n) = { x (n), n>0

introduce notation:

To prove inearity,

hypothesize that

x, cu3 - y, cn3 = x, cn3+

12 Cm3 -77 42 Cm3 = x2 Cm3+

Porm x3 CM = Q, ACM + Q2 X2 CM

Find y3 [n] = x3 [n]+

= a, x, cos+ + az x elal+

= a, y, (n) +az yz(n)

0 system is Lineari

for TI cons. Jer

y Cnj = { x Cnj o x = 0

Hypothesme fact system is not TI - need to find counter wealle Let X, Cnj = F(n) definition unit sample or or Impulse $S(n) = \begin{cases} 1, & n = 0 \end{cases}$ $S(n) = \begin{cases} 1, & n = 0 \end{cases}$ $S(n) = \begin{cases} 1, & n = 0 \end{cases}$ 1/2 (u)= & (n+1)= & (n-(1)) P X2CM y2007=0 + y,[n-61)] 60 system is not TI Why do we care about knearty and TI? MS. Par meur, TI systems, have the following Chrackersetton: - frequency veryonse $Y(\omega) = H(\omega) X(\omega)$ BTET of output DTET of input Courider a new signal 254) = e-juon conplex explonential

Coo = frequency units redian/souple e july = as (won) + j su (won) trig identities: Coscwon) = 1 (e 160 n + e j won) sin (won)= jz {ejwon-e-jwon} Franke 1 x[n] = e] En

A = 224

$$(|-(\omega)|^{2} + |-(\omega)|^{2} + |-(\omega)|^{2})$$

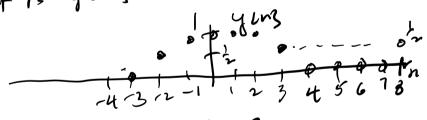
$$vot the right approach

$$voghin \quad |+(\omega)|^{2} + |-(\omega)|^{2}$$

$$voghin \quad |+(\omega)|^{2$$$$

Fact: For any LTI systems, if the

response to a real-valued input is rect-valued, then we have the tollowing properties;


() |H(w)| = |H(-w)(ena

(3 / 1-160) = - / H(-w) 454

Comider the following ipput iting square man with

7 LN] period 180 Schanges 9-7 4-3-2-1, 23 4 5 C 7 8

What is y (M? For a 2pt. MA

What was system done?

- 5 smoothed input
- 2) to sample delay