Amorraments

Office hour today:

11.30 = -12.30 p FST

4:001 - 5:001 FST

O Quia No. 2

wideble at 6:000 FST today

available at 6:000 BST today

wou have 30 minutes to work four solution

you have 30 minutes to work four solution

and uplead to Gradescape by 1:59/ EST

and uplead to Gradescape by 1:59/ EST

Completel an example to N=8=23

(radix 2 per)

Computation

CDIREES = 12 C.O. - 1.C.v. = 1. complex multiply

(complex addition

CFFF = Nlog_N GO.

N	Course	109=(N)	CIFFT	$\mathcal{N} = \frac{c_{\text{DARG}}}{c_{\text{FPAT}}} \left(q_{\text{CI}} \dot{a} \right)$
2	4	١	2	2
16	4 256), 4	64	1 4

1024 16,384	10	10,240	102.54
(1024) ² 20	20	10K2 10	/09.4×0°€ 100 3

Ordering of input date NES

Ordenis	οት ነሳ <u></u> ም				
Givary	order	Eupert	Dujust)	Bucan	Derima)
cuput	Stage 3	Stye 2		output	of in put
000	0	X[0]	XL-3 XL4)	100	५
001	>	yers	ALZI	010	2
010	2	4507 4507	×163	110	6
017	3	×511-	x L 13	00 /	'_
100	4	X[3]	×15]	161	5
101	6	x 457	XC3)	011	
(10	7	4L77	לרשא	(() / 1
1 111	<i>(</i>		1	(= 16.54	e to the

Output ordering is bit-reversed relative to the

Closing remarks to FFS

- 1) What we have derived is the decimation in-
- There is also a decimation in frequency algorithms

 (flip flow diagram by DIT & get DIF =

 input ordering is bit veverad. Output order is

 normal

There is more!

3) Can derive FFT algorithms for sony highly Confinte N, je

N= No: N, -N2 --- , NM-1 called uxod radix algorithm

4) S. Wnograd obereloped FFT algorithms based on "small convolutions"

B Very general and eliant FFT elyorithms exist in Match and Wompy library

Application of the FFT: Fifticient convolution

Talter an N-length signal with an M-length Alter, where he Alter 3 512 MCLN

Coe nave y Ln? = 2 x cm3 h [n-m) 2(-(m-n))

How much conjutation is needed?

C DIRECT = MN C.O.

Now lot's yee what the FFT would require:

D y(n) = > > > > X (N) (K) 3 X=0, - > N-1 N (092 H C. 0, S

(2) K[n] 5 0 +1 (N) [K] , 2= 03 ..., N-1

note: We have zero-polded The /ilter to be leigh N 3 y (N)(k) = H (N)(N)X (N)(M), k=0, --, N-1 N 0,0.5 9 y [n] = No7. DFT -1 y (N) (H) , M=0, ..., N-1 Ninga N C. a (ot) CFFF = 3 N/052(N) + 1/2 gain $\mathcal{M} = \frac{C_{Dirizer}}{C_{FFT}} = \frac{M\Phi}{3N ka_1 CW) + \frac{N}{2}} = \frac{M}{3 \log_2 CW + \frac{N}{2}}$ dras his work? problem: Det assumes that signal & spectrum are parionic with period N & xcm) $y(n) = \frac{1}{2} x(n) h(-cm-n)$ This drawing is not completely beginning of the lecture of the l This drawing is not correct. I will fix it at the beginning of the lecture on Wednesday 1 March. Solution 200-pad both signed xCm) on 1 silter hCm?

To levista N+M-1 Mrst office wor: 2:30, EST

Seand office how: 4:00 p GST