
	 1 

The Life of a Cosine: Sampling, Digital Filtering, and Conversion 
Back to Analog 

The purpose of this document is to trace a sinusoid at a single frequency through the block 
diagram shown below. We assume that the block labeled “DSP/Channel/Storage” consists only 
of a digital filter with frequency response   H

d (ω ) . We shall also assume that the signal is 
properly bandlimited. So there is no aliasing. There is, admittedly, a lot of material to wade 
through here. If you would rather get to the bottom line quickly, and skip the derivation, please 
note that by assumption, 		x1(t)= cos 2π f0t( ) ,

 and look at (10) and (22). 

The relationship (1) shown below that can be found on the Formula sheet for ECE 438 will 
be a critical element of the analysis. There is a proof of it in the Appendix at the end of this 
document. 

 
  
δ (ax + b) ≡ 1

a
δ (x + b / a)

. (1)
 

 

Fig. 1: Block diagram of processing system. 

Let us now trace our way through this system, analyzing the signals at each stage. At the 
input, we assume that 		x1(t)= cos 2π f0t( ) . By assumption, we are sampling at 	fs  samples/sec, 

where 		f0  satisfies the Nyquist condition. So 		f0 < fc = fs /2 ; and 		x2(t)≡ x1(t) . 

We have that the Continuous-Time Fourier Transform (CTFT) of 		x2(t)  is given by 

 
  
X2

CTFT( f ) = 1
2

δ ( f − f0 )+δ ( f + f0 ){ } . (2) 

To determine the Discrete-Time Fourier Transform (DTFT)   X2
DTFT(ω )  of 		x2[n]= x2(nT) , where 

		T =1/ fs , we first define the continuous-time (CT) sampled version   xs2(t)  of 		x2(t) , according 

to		x2
s(t)= combT x2(t)⎡⎣ ⎤⎦ . Thus, 

 
		
x2
s(t)= x2(nT)

n=−∞

∞

∑ δ(t −nT) . (3) 
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And  

  
  
Xs2

CTFT( f ) = fsrep fs
X2

CTFT( f )⎡⎣ ⎤⎦ . (4) 

or 

 
  
Xs2

CTFT( f ) = fs X2
CTFT( f − kfs ) =

k=−∞

∞

∑ fs

2
δ ( f − f0 − kfs )+δ ( f + f0 − kfs ){ }

k=−∞

∞

∑  

We know that 

 

  

X2
DTFT(ω ) = Xs2

CTFT( f )
f = fs

ω
2π

. (5) 

Therefore, 

 
  
X2

DTFT(ω ) =
fs

2
δ fs

ω
2π

− f0 − kfs

⎛
⎝⎜

⎞
⎠⎟
+δ fs

ω
2π

+ f0 − kfs

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭k=−∞

∞

∑ . (6) 

Using the identity (1) with   a = fs / 2π  in (6), we obtain 

 

  

X2
DTFT(ω ) = π δ ω − 2π ( f0 − kfs ) / fs( ) +δ ω − 2π (− f0 − kfs ) / fs( ){ }

k=−∞

∞

∑
= π δ ω − 2π f0 / fs( ) +δ ω + 2π f0 / fs( ){ }, 0 ≤ ω ≤ π

= π δ ω −ω0( ) +δ ω +ω0( ){ }, 0 ≤ ω ≤ π

, (7) 

where   ω0 = 2π f0 / fs . Thus,  

   x3[n]= cos(ω0n) .  (8) 

Whew! All that work to just get this simple result! 

Now we apply a digital filter with frequency response   H
d (ω )  to   x3[n] . Then, referring again 

to the block diagram in Fig. 1, the DTFT   X3
DTFT(ω )  of the filter output   x3[n]  is given by 

  X3
DTFT(ω ) = H d (ω )X2

DTFT(ω ) , which based on the last line of (7), is given by 

 
  
X3

DTFT(ω ) = π H d (ω0 )δ ω −ω0( ) + H d (−ω0 )δ ω +ω0( ){ }, 0 ≤ ω ≤ π . (9) 
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Here, we have used the identity   g(x)δ (x − x0 ) ≡ g(x0 )δ (x − x0 ) , assuming that   g(x)  is 

continuous at   x = x0 . Next, using the fact that 
  
H d (ω ) = H d (ω ) e j / H d (ω ) , the symmetry 

  H
d (−ω ) = H d *(ω ) , which follows from the assumption that any real-valued input to the system 

yields a real-valued output, and Euler’s identity for the cosine, we have that the filter output 

  x3[n]  can be expressed as 

 
  
x3[n]= H d (ω0 ) cos ω0n+ / H d (ω0 )( ) . (10) 

Now, we are ready to go back to the continuous-time domain. Referring again to Fig. 1, we 
can model the ideal D/A convertor by first considering the continuous-time version   xs4(t)  of the 
DT signal   x4[n]  given by 

 
  
xs4(t) = x4[n]δ (t − nT )

n=−∞

∞

∑ . (11) 

Note here that   x4[n]≡ x3[n] . This signal is passed through an idea low-pass filter  

   H ILP
a ( f ) = T rect(Tf) , (12) 

with gain  T . Here the superscript “a” denotes “analog” to distinguish this filter from a digital 
filter denoted by superscript “d”. 

In the time domain, we have a convolution with the impulse response   hILP
a (t) = sinc(t/T)  of this 

filter, which results in a replication of the impulse response where each impulse is located in 

  xs4(t) . This will properly interpolate between the samples   x4[n]= x4(nT )  of the DT input to the 
ideal D/A convertor. So we have 

 
  
x4(t) = x4(nT )sinc (t − nT ) / T( )

n=−∞

∞

∑ . (13) 

Now, let’s see how this all works out in the frequency domain. We have 

 

  

Xs4
CTFT( f ) = X3

DTFT(ω )
ω=2π f

fs

, (14) 

which is effectively the inverse of (5). Also, 
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Xs4
CTFT( f ) = fs rep fs

X4( f )⎡⎣ ⎤⎦

= fs X4( f − kfs )
k=−∞

∞

∑
 (15) 

 

Now, from (9), we have 

 
  
X3

DTFT(ω ) = π H d (ω0 )δ ω −ω0( ) + H d (−ω0 )δ ω +ω0( ){ }, 0 ≤ ω ≤ π . (16) 

Expanding this to make it periodic and remove the domain restriction, we obtain 

 
  
X3

DTFT(ω ) = π H d (ω0 )δ ω −ω0 − 2π k( ) + H d (−ω0 )δ ω +ω0 − 2π k( )
k=−∞

∞

∑ . (17) 

Then, applying (14) to (17), yields 

 
  
Xs4

CTFT( f ) = π H d (ω0 )δ 2π f
fs

−ω0 − 2π k
⎛

⎝⎜
⎞

⎠⎟
+ H d (−ω0 )δ 2π f

fs

+ω0 − 2π k
⎛

⎝⎜
⎞

⎠⎟k=−∞

∞

∑ . (18) 

Next, we again use the identity (1), but this time with   a = 2π / fs  to get 

 
  
Xs4

CTFT( f ) =
fs

2
H d (ω0 )δ f −

fs

2π
(ω0 − 2π k)

⎛
⎝⎜

⎞
⎠⎟
+ H d (−ω0 )δ f −

fs

2π
(−ω0 + 2π k)

⎛
⎝⎜

⎞
⎠⎟k=−∞

∞

∑ . (19) 

We also note that   ω0 = 2π f0 / fs . After using this in (19), we have 

 
  
Xs4

CTFT( f ) =
fs

2
H d (2π f0 / fs )δ f − f0 − kfs( ) + H d (−2π f0 / fs )δ f + f0 − kfs( )

k=−∞

∞

∑ . (20) 

Applying the low-pass filter (12) to (20), blocks all but the   k = 0  in (20), under our 
assumption that   f0 < fs / 2 , i.e. we are satisfying the Nyquist sampling condition. Also, the filter 
gain  T  in (12) cancels the factor  fs  immediately to the right of the equal sign in (20). So we 
finally have 

 

  

X4
CTFT( f ) = H ILP

a ( f )Xs4
CTFT( f )

= 1
2

H d (2π f0 / fs )δ f − f0( ) + H d (−2π f0 / fs )δ f + f0( ){ } . (21) 

Transforming this expression to the time domain, we obtain 
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x4(t) = H d (2π f0 / fs ) cos 2π f0t + / H d (2π f0 / fs )( ) , (22) 

which is our final result!! 

 

Appendix A 
Proof of Equation (1) 

Here we prove (1), which for convenience is restated here as (A1): 

 
  
δ (ax + b) ≡ 1

a
δ (x + b / a)

 (A1)
 

There are many ways to obtain the ideal CT impulse function  δ (t)  as a limiting case of real 
signals. One example is 

 
  
δ (t) = lim

Δ→0

1
Δ

rect(t/Δ) . (A2) 

Using any one of these forms, we can prove the two critical identities (A3) and (A4) for the 
impulse function: 

 
  
g(x0 ) = g(ξ )

−∞

∞

∫ δ (ξ − x0 )dξ , (A3) 

and 

 

  

g(x − x0 ) = g(x)∗δ (x − x0 )

= g(ξ )
−∞

∞

∫ δ (x − x0 −ξ )dξ
. (A4) 

The third critical identity (A5) for the impulse function follows from (A3) 

   g(x)δ (x − x0 ) ≡ g(x0 )δ (x − x0 ) . (A5) 

All five of the identities (A1)-(A5) can be found on the Formula sheet for ECE 438. Here, for 
these identities to be valid, it is assumed that   g(x)  is continuous at   x = x0 . It is possible to derive 
special cases for them when this assumption is not satisfied. It is also possible to derive special 
cases when the limits of integration in (A3) are not infinite. However, these special cases are 
beyond the scope of what we wish to consider here. 
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To prove (A1), we will simply show that (A3) is satisfied under the assumption that (A1) 
holds. In particular, let us assume that   a > 0 , and consider 

 
  

g(ξ )
−∞

∞

∫ δ (aξ − x0 )dξ = 1
a

g(η / a)
−∞

∞

∫ δ (η − x0 )dη . (A5) 

Here we have made a change of the variable of integration  η = aξ  in (A3) to obtain the 
expression on the right side of the equal sign. Note that we have made the substitution 

  dξ = dη / a . For   a < 0 , we end up reversing the limits of integration, But they can be restored to 
go from −∞  to ∞  by putting a minus sign in front of the term   1/ a . Then since   a < 0  in this case, 
we can replace   1/ a  by   1/ a , and the expression will be valid for both   a > 0  and   a < 0 . Now, 
by (A2), we have that the right side of (A5) can be expressed as 

 
  

1
a

g(η / a)
−∞

∞

∫ δ (η + b)dη = 1
a

g(−b / a) . (A6) 

But according to (A2), we also have that 

 
  

g(η)
−∞

∞

∫
1
a
δ (η + b / a)dη = 1

a
g(−b / a) . (A7) 

Thus, from the left side of (A5) and both sides of (A6) and (A7), we have that 

   
δ (ax + b) ≡ 1

a
δ (x + b / a)

, 

which is what we wanted to prove. The proof that (A4) holds follows similarly. 


