1.4.1 ANALYSIS OF SAMPLING

A simple scheme for sampling a waveform is to gate it.

T — period

τ — interval for which switch is closed

 τ/T — duty cycle

Fourier Analysis

$$\begin{split} X_{s}(f) &= S(f) * X(f) \\ s(t) &= rep_{T}[\frac{1}{\tau} \ rect \ (\frac{t}{\tau})] \\ S(f) &= \frac{1}{T} \ comb \frac{1}{T} \ [sinc \ (\tau f)] \\ &= \frac{1}{T} \ \sum_{k} sinc \ (\tau k/T) \ \delta(f - k/T) \\ X_{s}(f) &= \frac{1}{T} \ \sum_{k} sinc \ (\tau k/T) \ X(f - k/T) \end{split}$$

How do we reconstruct x(t) from $x_s(t)$?

 $Nyquist\ condition$

Perfect reconstruction of x(t) from $x_s(t)$ is possible if X(f) = 0, $|f| \ge 1/(2T)$

$Nyquist\ sampling\ rate$

$$f_{\rm s}=\frac{1}{T}=2W$$

Ideal Sampling

What happens as $\tau \to 0$?

$$s(t) \rightarrow \sum_{m} \delta(t - mT)$$

$$x_s(t) \rightarrow \sum_m x(mT) \ \delta(t - mT) = comb_T[x(t)]$$

$$X_s(f) \rightarrow \frac{1}{T} \mathop{\textstyle \sum}_k X(f-k/T) = \frac{1}{T} \mathop{\rm rep}\nolimits \frac{1}{T} \left[X(f) \right]$$

- \bullet An ideal lowpass filter will again reconstruct x(t).
- In the sequel, we assume ideal sampling.

Transform Relations

$$\operatorname{rep}_T[x(t)] \ \stackrel{\operatorname{CTFT}}{\longleftrightarrow} \ \frac{1}{T} \ \operatorname{comb} \frac{1}{T} \ [X(f)]$$

$$comb_{T}[x(t)] \ \stackrel{CTFT}{\longleftrightarrow} \ \frac{1}{T} \ rep \frac{1}{T} \ [X(f)]$$

Given one relation, the other follows by reciprocity.

Whittaker-Kotelnikov-Shannon Sampling Expansion

$$x_{r}(t) = \sum_{m} x(mT) \operatorname{sinc} \left(\frac{t - mT}{T}\right)$$

$$x_{r}(t) = \sum_{m} x(mT) \operatorname{sinc} (n - m)$$

$$= x(nT)$$

If Nyquist condition is satisfied, $x_r(t) \equiv x(t)$.

Zero Order Hold Reconstruction

$$x_r(t) = \sum\limits_{m} x(mT) \ rect \left(rac{t-T/2-mT}{T}
ight)$$

$$= h_{\rm ZO}(t) * x_{\rm s}(t)$$

$$\mathrm{h_r(t)} = \mathrm{rect}\left(rac{\mathrm{t} - \mathrm{T/2}}{\mathrm{T}}
ight)$$

$$\begin{split} X_r(f) &= H_{\rm ZO}(f) \; X_s(f) \\ H_{\rm ZO}(f) &= T \; {\rm sinc} \; (Tf) \; e^{-j2\pi f(T/2)} \end{split}$$

- One way to overcome the limitations of zero order hold reconstruction is to oversample, i.e. choose $f_s = 1/T \gg W$.
- This moves spectral replications farther out to where they are better attenuated by sinc(Tf).
- What happens if we inadvertently undersample, and then reconstruct with an ideal lowpass filter?

Effect of Undersampling

• frequency truncation error

$$X_r(f) = 0$$
, $|f| \ge f_s/2$

aliasing error

frequency components at $f_1 = f_s/2 + \Delta$ fold down to and mimic frequencies $f_2 = f_s/2 - \Delta$.

Example

- $x(t) = \cos [2\pi (5000)t]$
- sample at $f_s = 8 \text{ kHz}$
- reconstruct with ideal lowpass filter having cutoff at 4 kHz.

Sampling

$$x_r(t) = \cos\left[2\pi(3000)t\right]$$

Note that x(t) and $x_r(t)$ will have the same sample values at times t = nT (T = 1/(8000))

$$\begin{split} x(nT) &= \cos \left\{ 2\pi (5000)n/8000 \right\} \\ &= \cos \left\{ 2\pi [(5000)n - (8000)n]/8000 \right\} \\ &= \cos \left\{ -2\pi (3000)n/8000 \right\} \\ &= x_r(nT) \end{split}$$

Reconstruction

