1.4.1 ANALYSIS OF SAMPLING

A simple scheme for sampling a waveform is to

gate 1t.
x(t) >< | : xs(t)
—mm—
T

T — period |
T — interval for which switch is closed
7/T — duty cycle
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xs(t)=s(t) x(t)



Fourier Analysis

X,4(f) = S(f) * X()

s(t) = repT[% rect (%)]

S(f) =

% comb_Tl__ [sinc (rf)]

1

% sinc (7k/T) 6(f — k/T)

!

X, (f) = %- 5 sinc (k /T) X(f — k/T)



How do we reconstruct x(t) from x4(t)?
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xs(t) xr(t)

Nyquist condition

Perfect reconstruction of x(t) from x4(t) is possible

if X(f) =0, |[f] = 1/(27T)
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Nyquist sampling rate
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Ideal Sampling

What happens as 7 — 0?

s(t) = 3 6(t — mT)

xs(t) = 3 x(mT) §(t — mT) = combr [x(t)]

<7
- P
T
3T t

0 T 2T
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1 1

X,() = o X~ /T) = o rep L [XO)

Xs(f) A

J ’ \”/ ’ \“/ \'“/__\"/JT\”/Z}T\”/}T

e An ideal lowpass filter will again reconstruct

x(t).

e In the sequel, we assume ideal sampling.
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Transform Relations

reprlx(t)] < - comb L [X(t)
CTFT 1
combr[x(t)) > - rep L [X(1)

Given one relation, the other follows by recipro-
city.
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Whittaker-Kotelnikov-Shannon

Sampling Expansion

X, () = H () X (1)
H,(f) = T rect (Tf)
x;(t) = hy(t) * x4(t)
h,(t) = sinc (t/T)

xs(t) = 3 x(mT) §(t — mT)

m
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t —mT
T

x:(t) = 3 x(mT) sinc

= x(nT)

If Nyquist condition is satisfied, x;(t) = x(t).
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Zero Order Hold Reconstruction

xr(t)

——

// ~_ // N
'—‘—‘ —, ‘ , ~—— -
-T 0 T 2T 3T t
x;(t) = ) x(mT) rect t =1/ ,i —ml
m
= hyzo(t) * xs(t) A
hzo(t)
1
h.(t) = rect L= T/2
T T
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X, (f) = Hzo(

f) X;(f)

Hyo(f) = T sine (Tf) ¢ 327(T/2)

Xs(f)

A
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e One way to overcome the limitations of zero
order hold reconstruction is to oversample, t.e.

choose f; =1/T > W.

e This moves spectral replications farther out to
where they are better attenuated by sinc(Tf).

e What happens if we inadvertently undersample,

and then reconstruct with an ideal lowpass
filter?
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Effect of Undersampling

f= 1T / y /o XO
[ T
] f



e frequency truncation error

Xr(f)-z(), |f' = fs/2

e aliasing error

frequency components at f; =f,/2 + A fold
down to and mimic frequencies fo = f5/2 — A.
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Example

x(t) = cos [27(5000)t]
sample at f; = 8 kHz

reconstruct with ideal lowpass filter having
cutoff at 4 kHz.
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Sampling
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x;(t) = cos [27(3000)t]

Note that x(t) and x.(t) will have the same sample
values at times t = nT (T = 1/(8000))

x(nT) = cos {27(5000)n /8000}
= cos {27[(5000)n — (8000)n]|/8000}
= cos {—27(3000)n/8000}

= x;(nT)
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Reconstruction

-15 -10 -5 5 10 15 fkHz

llllllllllllllllllllllllllllll



