1.2.1 SYSTEM PROPERTIES

Notation:

A. Linearity

def. A system S is *linear* (L) if for any two inputs $x_1(t)$ and $x_2(t)$ and any two constants a_1 and a_2 , it satisfies:

$$S[a_1x_1(t) + a_2x_2(t)] = a_1S[x_1(t)] + a_2S[x_2(t)]$$

Special cases:

a. homogeneity (let $a_2 = 0$)

$$S[a_1x_1(t)] = a_1S[x_1(t)]$$

b. superposition (let $a_1 = a_2 = 1$)

$$S[x_1(t) + x_2(t)] = S[x_1(t)] + S[x_2(t)]$$

1.
$$y(t) = \int_{t-1/2}^{t+1/2} x(\tau) d\tau$$

$$\mathrm{let}\; x_3(t) = a_1 x_1(t) + a_2 x_2(t)$$

$$\mathbf{y}_3(\mathrm{t}) = \int\limits_{\mathrm{t-1/2}}^{\mathrm{t+1/2}} \mathbf{x}_3(au) \mathrm{d} au$$

$$= \int\limits_{t-1/2}^{t+1/2} {[a_1 x_1(\tau) + a_2 x_2(\tau)] d\tau}$$

$$egin{aligned} y_3(t) &= a_1 \int\limits_{t-1/2}^{t+1/2} x_1(au) d au + a_2 \int\limits_{t-1/2}^{t+1/2} x_2(au) d au \end{aligned}$$
 $= a_1 y_1(t) + a_2 y_2(t)$

:. system is linear.

Can similarly show that

2.
$$y(n) = \frac{1}{3} [x(n) + x(n-1) + x(n-2)]$$
 is linear.

Consider two additional examples:

3.
$$y(n) = n x(n)$$

let $x_3(n) = a_1x_1(n) + a_2x_2(n)$
 $y_3(n) = n x_3(n)$
 $= a_1 n x_1(n) + a_2 n x_2(n)$
 $= a_1 y_1(n) + a_2 y_2(n)$

: system is linear.

4.
$$y(t) = \begin{cases} -1, & x(t) < -1, \\ x(t), & -1 \le x(t) \le 1, \\ 1, & 1 < x(t), \end{cases}$$

Suspect that system is nonlinear - find a counterexample.

$$\begin{aligned} x_1(t) &\equiv 1 &\Rightarrow y_1(t) \equiv 1 \\ x_2(t) &\equiv \frac{1}{2} &\Rightarrow y_2(t) \equiv \frac{1}{2} \\ x_3(t) &= x_1(t) + x_2(t) = \frac{3}{2} \\ &\Rightarrow y_3(t) \equiv 1 \neq \frac{3}{2} \end{aligned}$$

:. system is not linear.

Because it is *memoryless*, this system is completely described by a curve relating input to output at each time t:

Importance of linearity: can represent response to a complex input in terms of responses to very simple inputs.

B. Time-invariance

def. A system S is time-invariant (TI) if delaying the input results in only an identical delay in the output, i.e.

if
$$y_1(t) = S[x_1(t)]$$

and $y_2(t) = S[x_1(t - t_0)]$
then $y_2(t) = y_1(t - t_0)$

2.
$$y(n) = \frac{1}{3} [x(n) + x(n-1) + x(n-2)]$$

assume

$$y_1(n) = \frac{1}{3} [x_1(n) + x_1(n-1) + x_1(n-2)]$$

$$let x_2(n) = x_1(n-n_0)$$

$$\begin{aligned} y_2(n) &= \frac{1}{3} \left[x_2(n) + x_2(n-1) + x_2(n-2) \right] \\ &= \frac{1}{3} \left[x_1(n-n_0) + x_1(n-1-n_0) + x_1(n-2-n_0) \right] \\ &= \frac{1}{3} \left[x_1(n-n_0) + x_1(n-n_0-1) + x_1(n-n_0-2) \right] \\ &= y_1(n-n_0) \end{aligned}$$

:. system is TI.

Can similarly show that

1.
$$y(t) = \int_{t-1/2}^{t+1/2} x(\tau) d\tau$$
 is TI

3.
$$y(n) = n x(n)$$

assume $y_1(n) = n x_1(n)$
let $x_2(n) = x_1(n-n_0)$
 $y_2(n) = n x_2(n)$
 $= n x_1(n-n_0)$
 $\neq (n-n_0) x_1(n-n_0)$

:. system is not TI

To demonstrate, consider response to impulse:

$$\begin{array}{ll} x_1(n) = \delta(n) & \Rightarrow y_1(n) \equiv 0 \\ x_2(n) = \delta(n-1) \Rightarrow y_2(n) = \delta(n-1) \\ & \neq y_1(n-1) \end{array}$$

C. Causality

def. A system S is *causal* if the output at time t depends only on $x(\tau)$ for $\tau \leq t$.

Causality is equivalent to the property:

If
$$x_1(t) = x_2(t)$$
, $t \le t_0$, then $y_1(t) = y_2(t)$, $t \le t_0$

- 1. not causal
- 2. causal
- 3. causal
- 4. causal

D. Stability

def. A system is said to be bounded-input-bounded-output (BIBO) stable if every bounded input produces a bounded output, i.e. $M_x < \infty \Rightarrow M_y < \infty$.

2.
$$y(n) = \frac{1}{3}[x(n) + x(n-1) + x(n-2)]$$

Assume $|x(n)| \le M_x$ for all n.

$$\begin{aligned} \mid y(n) \mid &= \frac{1}{3} \mid x(n) + x(n-1) + x(n-2) \mid \\ &\leq \frac{1}{3} \left[\mid x(n) \mid + \mid x(n-1) \mid + \mid x(n-2) \mid \right] \\ &\leq M_x \end{aligned}$$

- 1. It can similarly be shown that the system of Example 1 is also BIBO stable.
- 3. $y(n) = n \ x(n)$ Let $x(n) \equiv 1$.
 Given any real M_y , $\exists \ N \ (namely \ N = \left\lceil M_y \right\rceil)$ such that $|\ y(n)\ | \ \ge \ M_y$ for $n \ge \ N$.
- 4. Since $|y(t)| \le 1$, system is trivially BIBO stable. In fact, input can be unbounded.