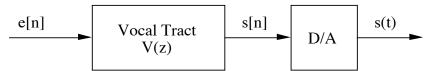
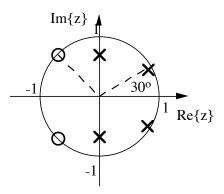
1. The digital synthesizer for voiced speech shown below operates at a 12 kHz sampling rate.



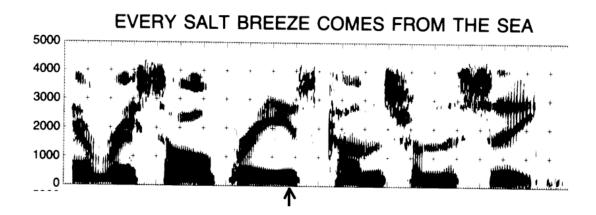
The excitation is given by

$$e[n] = \sum_{k=-\infty}^{\infty} \delta[n-120k].$$

The vocal tract transfer function V(z) has poles and zeros at the locations shown below:



- a. What is the pitch period in seconds and the pitch frequency in Hz?
- b. Find the formant frequencies in Hz, and rank them according to their strength, *i.e.* how peaked the vocal tract response is at the corresponding frequency. Explain the reasoning underlying your ranking.
- c. Sketch what the speech waveform s(t) might look like.
- 2. Consider the spectrogram shown below for the utterance "Every salt breeze comes from the sea."



- a. Assuming the entire utterance lasted 2 sec, *very* roughly estimate the pitch period.
- b. Is this a wideband or narrowband spectrogram?
- c. If your answer to part a, was "wideband", sketch what a narrowband spectrogram for this same signal would look like. On the other hand, if your answer to part a, was "narrowband", sketch what a wideband spectrogram for this same signal would look like.
- d. Identify the formant frequencies at the time marked by the arrow.
- e. What phoneme do you think is being uttered at this point? Support your answer by comparison with the formant frequencies in the table below:

TABLE 2.2.	Formant 1	requencies	for typical vowels.

ARPABET Symbol for Vowel	IPA Symbol	Typical Word	Fi	F ₂	F
ſY	N	beet	270	2290	3010
IH	ΛV	bit	390	1990	2550
EH	/c/	bet	530	1840	2480
AE	/ e /	bat	660	1720	2410
AH	IN	but	520	1190	2390
AA	/2/	hot	730	1090	2440
AO	/s/	bought	570	840	2410
UH	/U/	foot	440	1020	2240
υw	/ᠬ/	boot	300	870	2240
ER	124	bird	490	1350	1690

3. Consider the signal

$$x[n] = \begin{cases} \cos(\pi n/7), & n < 0, \\ \cos(2\pi n/3), & n \ge 0. \end{cases}$$

a. Carefully sketch x[n].

Assume a rectangular window

$$w[n] = \begin{cases} 1, & |n| \le 12, \\ 0, & \text{else.} \end{cases}$$

b. Compute the STDTFT as defined below

$$X(\omega, n) = \sum_{k} x[k]w[n-k]e^{-jwk}$$

for the following cases (Be sure to express your answer in terms of the function $psinc_N(\cdot)$ for appropriate values of N):

i.
$$n \le -13$$

iii.
$$n = 0$$

- c. Sketch $|X(\omega,n)|$ for all n. Be sure to label important dimensions. (You may ignore the contributions of the phase terms when preparing your sketch.)
- 4. In class, we derived conditions for perfect reconstruction using an L-channel modulated filter bank in which the ℓ -th channel has unit sample response $h_{\ell}[n] = h_0[n]e^{j2\pi\ell/L}$, where $h_0[n]$ is the unit sample response of the 0-th channel. Thus the frequency response of each channel is just a shifted version of the frequency response of the 0-th channel. Consider a system with unit sample response for the 0-th channel given by

$$h_0[n] = \frac{1}{L}\operatorname{sinc}(n/L)\cos(\pi n/L)$$
.

- a. Sketch the unit sample response $h_0[n]$ for L = 6.
- b. Derive the frequency response $H_0(\omega)$ corresponding to the unit sample response $h_0[n]$. Note that it may be easiest to do this by considering what frequency response $H_0(\omega)$ will yield the correct inverse DTFT $h_0[n]$ from

$$h_0[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_0(\omega) e^{j\omega n} d\omega$$
, for the given $h_0[n] = \frac{1}{L} \operatorname{sinc}(n/L) \cos(\pi n/L)$, while also keeping in mind Euler's identity.

- c. Sketch $H_0(\omega)$ for L = 6.
- d. Show that $h_0[n]$ satisfies the time-domain condition derived in class for perfect reconstruction with a modulated filter bank.
- e. Show that $H_0(\omega)$ satisfies the frequency-domain condition derived in class for perfect reconstruction with a modulated filter bank.
- f. Comment on the frequency selectivity of the filter bank with base unit sample response $h_0[n]$ given above, compared with a filter bank having base unit sample response $h_0[n] = \frac{1}{L} \operatorname{sinc}(n/L)$.