- 1. For the signals x[n] shown below, do the following:
 - i. Sketch x[n] by hand, i.e. don't use Matlab or Python
 - ii. Calculate the metrics E_x , P_x , x_{rms} , M_x , A_x , and x_{avg} by hand.
 - iii. Sketch $y_1[n]$ and $y_2[n]$ by hand, where $y_1[n]$ and $y_2[n]$ are, respectively, the result of downsampling with D = 3, and upsampling with D = 3.
 - a. $x[n] = \cos(\pi n/4)$
 - b. $x[n] = 2^{-n}u[n]$
- 2. For the CT signal

$$x(t) = \begin{cases} 1, & -1 \le t \le 0 \\ 1 - t, & 0 \le t \le 1 \\ 0, & \text{else} \end{cases}$$

do the following:

- a. Sketch x(t) by hand, i.e. don't use Matlab or Python
- b. Sketch x(-t/3+3) by hand, i.e. don't use Matlab or Python
- 3. For each signal x[n] below, do the following:
 - i. Use MATLAB or Python to compute the result of the following two filtering operations:

$$y_1[n] = \frac{1}{4} (x[n] - 2x[n-1] + x[n-2])$$

$$y_2[n] = x[n] + x[n-1] + y_2[n-1], \quad y_2[n] = 0, n < 0$$

- ii. Use MATLAB or Python to generate stem plots for x[n], $y_1[n]$, and $y_2[n]$ for $-5 \le n \le 20$. Plot all three signals on the same page, using the subplot command.
- iii. Describe in detail the effect that each filter has on the signal.

Note: Be sure to turn in printouts of all MATLAB or Python code.

- a. x[n] = u[n] u[n-6]
- b. $x[n] = \cos(\pi n/5)u[n]$
- 4. For each system below, determine whether or not it is:
 - i. linear,
 - ii. time-invariant,
 - iii. memoryless

For the properties i) and ii), if you think it holds, prove it. Otherwise, find a counter-example. In addition, find the response to an impulse (unit sample).

a.
$$y[n] = x[n] - x[n-1] - \frac{1}{3}y[n-1]$$

b.
$$y[n] = (x[n])^{-2}$$

c.
$$y[n] = e^{j\pi n/2}x[n]$$