
1

EE 469 Operating Systems Engineering

Hardware Support for
Operating Systems

Spring 2001

David S. Ebert

Computer-System Architecture

Interrupts

A mechanism for achieving coordination between
concurrently operating units of a computer system, and
for responding to specific conditions within a processor.

A transfer of flow of control that is forced by the
hardware.

Trap - a software generated interrupt caused either by an
error, or by a user program request that an OS service be
performed.

2

Basic I/O and Computer-System Operation

I/O devices and the CPU can execute concurrently.

Each device controller is in charge of a particular device
type.

Each device controller has a local buffer and special
purpose registers.

CPU moves data from/to main memory to/from local buffers

I/O is from the device to local buffer of controller.

Device controller informs CPU that it has finished its
operation by causing an interrupt .

Common Functions of Interrupts

Interrupts transfers control to the interrupt service
routine generally, through the interrupt vector , which
contains the addresses of all the service routines.

Interrupt architecture must save the address of the
interrupted instruction.

Incoming interrupts are disabled (at this and lower
priority levels) while the interrupt is being processed to
prevent a lost interrupt .

Interrupts are enabled after servicing current interrupt

Modern operating systems are interrupt driven.

Interrupt Handling

The operating system preserves the state of the CPU by
storing registers and the program counter.

Determines which type of interrupt has occurred:

• polling

• vectored interrupt system

Separate segments of code determine what action should
be taken for each type of interrupt

3

Interrupt Time Line For a Single Process Doing
Output

I/O Structure

Synchronous I/O: After I/O starts, control returns to user
program only upon I/O completion.
• wait instruction idles the CPU until the next interrupt

• wait loop (contention for memory access).

• At most one I/O request is outstanding at a time, no simultaneous
I/O processing.

Asynchronous I/O: After I/O starts, control returns to user
program without waiting for I/O completion.
• System call – request to the operating system to allow user to wait

for I/O completion.

• Device-status table contains entry for each I/O device indicating
its type, address, and state.

• Operating system indexes into I/O device table to determine
device status and to modify table entry to include interrupt.

Two I/O methods

Synchronous Asynchronous

4

Direct Memory Access (DMA) Structure

Used for high-speed I/O devices able to transmit
information at close to memory speeds.

Device controller transfers blocks of data from buffer
storage directly to main memory without CPU
intervention.

Only one interrupt is generated per block, rather than the
one interrupt per byte.

Storage Structure

Main memory – only large storage media that the CPU
can access directly.

Secondary storage – extension of main memory that
provides large nonvolatile storage capacity.

Magnetic disks – rigid metal or glass platters covered
with magnetic recording material

• Disk surface is logically divided into tracks, which are
subdivided into sectors.

• The disk controller determines the logical interaction between
the device and the computer.

Interrupt Driven O.S.

Modern OS’s are interrupt driven
• Buffering and spooling required I/O interrupts

• Multiprogramming required artificial interrupts (traps) to switch
from user to supervisor mode

At the lowest level an OS is just a bunch of interrupt
service routings
• Each routine simply returns to whatever was executing before it

was interrupted

– A use process

– An OS process

– Another interrupt routine

• Else infinite wait loop

5

Storage Hierarchy

Storage systems organized in hierarchy.

• Speed

• cost

• volatility

Caching – copying information into faster storage
system; main memory can be viewed as a cache for
secondary storage.

Storage-Device Hierarchy

Hardware Protection

Dual-Mode Operation

I/O Protection

Memory Protection

CPU Protection

6

Dual-Mode Operation

Sharing system resources requires operating system to
ensure that an incorrect program cannot cause other
programs to execute incorrectly.

Provide hardware support to differentiate between at
least two modes of operations.

1. User mode – execution done on behalf of a user.

2. Monitor mode (also supervisor mode, kernel mode or system
mode) – execution done on behalf of operating system.

Special system call instruction: generate an interrupt and switches
to monitor mode (conversely, 1 to switch to user mode)

Dual-Mode Operation (Cont.)

Mode bit added to computer hardware to indicate the
current mode: monitor (0) or user (1).

When an interrupt or fault occurs hardware switches to
monitor mode.

Privileged instructions can be issued only in
monitor mode .

monitor user

Interrupt/fault

set user mode

Types of Protection

I/O Protection

Memory Protection

Cpu Protection

7

I/O Protection

All I/O instructions are privileged instructions.

Must ensure that a user program could never gain control
of the computer in monitor mode (I.e., a user program
that, as part of its execution, stores a new address in the
interrupt vector).

Memory Protection

Must provide memory protection at least for the interrupt
vector and the interrupt service routines.

In order to have memory protection, add two registers
that determine the range of legal addresses a program
may access:

• base register – holds the smallest legal physical memory
address.

• Limit register – contains the size of the range

Memory outside the defined range is protected.

A Base And A limit Register Define A Logical Address Space

8

Protection Hardware

When executing in monitor mode, the
operating system has unrestricted access to
both monitor and user’s memory.

The load instructions for the base and limit
registers are privileged instructions.

CPU Protection

Timer – interrupts computer after specified period to
ensure operating system maintains control.

• Timer is decremented every clock tick.

• When timer reaches the value 0, an interrupt occurs.

Timer commonly used to implement time sharing.

Time also used to compute the current time.

Load-timer is a privileged instruction.

General-System Architecture

Given the I/O instructions are privileged, how does the
user program perform I/O?

System call – the method used by a process to request
action by the operating system.

• Usually takes the form of a trap to a specific location in the
interrupt vector.

• Control passes through the interrupt vector to a service routine
in the OS, and the mode bit is set to monitor mode.

• The monitor verifies that the parameters are correct and legal,
executes the request, and returns control to the instruction
following the system call.

9

Use of A System Call to Perform I/O

What Privileged Instructions are there in
Unix?
Intro.2 getauid.2 readv.2

__sparc_utrap_install.2 getcontext.2 rename.2
_exit.2 getdents.2 resolvepath.2

_lwp_cond_broadcast.2 getegid.2 rmdir.2

_lwp_cond_signal.2 geteuid.2 sbrk.2
_lwp_cond_timedwait.2 getgid.2 semctl.2

_lwp_cond_wait.2 getgroups.2 semget.2
_lwp_continue.2 getitimer.2 semop.2

_lwp_create.2 getmsg.2 setaudit.2

_lwp_exit.2 getpgid.2 setauid.2
_lwp_getprivate.2 getpgrp.2 setcontext.2

_lwp_info.2 getpid.2 setegid.2

_lwp_kill.2 getpmsg.2 seteuid.2
_lwp_makecontext.2 getppid.2 setgid.2

_lwp_mutex_lock.2 getrlimit.2 setgroups.2

_lwp_mutex_trylock.2 getsid.2 setitimer.2
_lwp_mutex_unlock.2 getuid.2 setpgid.2

_lwp_self.2 intro.2 setpgrp.2

_lwp_sema_init.2 ioctl.2 setregid.2
_lwp_sema_post.2 kill.2 setreuid.2

_lwp_sema_trywait.2 lchown.2 setrlimit.2

_lwp_sema_wait.2 link.2 setsid.2
_lwp_setprivate.2 llseek.2 setuid.2

_lwp_sigredirect.2 lseek.2 shmat.2
_lwp_suspend.2 lstat.2 shmctl.2

More system calls
_lwp_wait.2 memcntl.2 shmdt.2

_signotifywait.2 mincore.2 shmget.2
access.2 mkdir.2 shmop.2

acct.2 mknod.2 sigaction.2

acl.2 mmap.2 sigaltstack.2
adjtime.2 mount.2 sigpending.2

alarm.2 mprotect.2 sigprocmask.2

audit.2 msgctl.2 sigsend.2
auditon.2 msgget.2 sigsendset.2

auditsvc.2 msgrcv.2 sigsuspend.2

booktitles.ent@ msgsnd.2 sigwait.2
brk.2 munmap.2 smancommon.ent@

chdir.2 nice.2 stat.2
chmod.2 ntp_adjtime.2 statvfs.2

chown.2 ntp_gettime.2 stime.2

chroot.2 open.2 swapctl.2
close.2 p_online.2 symlink.2

creat.2 pathconf.2 sync.2

dup.2 pause.2 sysfs.2
exec.2 pcsample.2 sysinfo.2

10

Even More
execl.2 pipe.2 time.2

execle.2 poll.2 times.2
execlp.2 pread.2 uadmin.2

execv.2 priocntl.2 ulimit.2

execve.2 priocntlset.2 umask.2
execvp.2 processor_bind.2 umount.2

exit.2 processor_info.2 uname.2

facl.2 profil.2 unlink.2
fchdir.2 pset_assign.2 ustat.2

fchmod.2 pset_bind.2 utime.2

fchown.2 pset_create.2 utimes.2
fchroot.2 pset_destroy.2 vfork.2

fcntl.2 pset_info.2 vhangup.2
fork.2 ptrace.2 wait.2

fork1.2 putmsg.2 waitid.2

fpathconf.2 putpmsg.2 waitpid.2
fstat.2 pwrite.2 write.2

fstatvfs.2 read.2 writev.2

getaudit.2 readlink.2 yield.2

From ls /usr/man/sman2

