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Abstract

Sensor replacement is important for sensor networks to provide continuous sensing services. Upon sensor node failures, holes
(uncovered areas) may appear in the sensing coverage. Existing approaches relocate redundant nodes to fill the holes and require
all or most sensor nodes to have mobility. However, mobility equipment is expensive while technology trends are scaling sensors to
be smaller and cheaper. In this paper, we propose to use a small number of mobile robots to replace failed sensors for a large-scale
static sensor network. We study algorithms for detecting and reporting sensor failures and coordinating the movement of robots
that minimize the motion energy of mobile robots and the messaging overhead incurred to the sensor network. A manager receives
failure reports and determines which robot to handle a failure. We study three algorithms: a centralized manager algorithm, a fixed
distributed manager algorithm, and a dynamic distributed manager algorithm. Our analysis and simulations show that: (a) the cen-
tralized and the dynamic distributed algorithms have lower motion overhead than the fixed distributed algorithm; (b) the centralized
algorithm is less scalable than the two distributed manager algorithms, and (c) the two distributed algorithms have higher messaging
cost than the centralized algorithm. Hence, the optimal choice of the coordination algorithm depends on the specific scenarios and
objectives being optimized.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Sensor networks have been intensively studied. Many
studies focus on how to effectively collect and transfer
data through energy-aware and/or fault-tolerant routing
techniques [1,2,13,19,21,23]. Sensor networks are
assumed unattended in various environments such as
disaster areas, hazard fields, or battle fields. It is desir-
able to deploy and maintain the sensor network autono-
mously. There have been many studies on sensor
deployment [8,10,18,27,33], for example, moving sensors
to desired locations to provide coverage. Sensor nodes
usually have simple designs, and their components are
prone to failures. This can be especially serious in a haz-
ardous environment, such as high temperatures or
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humidity. After a sensor network is deployed, some
nodes may fail and leave holes in coverage. It is neces-
sary to fill the holes and keep desired coverage. One
way of maintaining coverage is to replace failed nodes
with functional ones. This is called sensor replacement.
Our paper focuses on sensor replacement upon failures.

Wang et al. [29] propose using some redundant mobile
sensors relocating themselves to fill the holes. They present
a cascading movement method to balance the energy cost
and the response time of sensor replacement. In their study,
sensor nodes are assumed to have mobility. However,
mobility is an expensive feature, as mobile sensors need
to have motors, motion control, and GPS modules. In
large-scale sensor networks, the nodes are usually assumed
to be small and cheap. Adding mobility to a large number
of sensor nodes is expensive.

In this paper, we propose using only a few robots to
assist sensor replacement. All robots are mobile and can
pick, carry, and unload sensor nodes. When nodes fail,
the robots move to the locations of the failed nodes and
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Fig. 1. An overview of sensor replacement using robots. The circles
represent sensor nodes and squares represent robots. A guardian node
detects a guardee’s failure (shown by a cross over the circle) and then
reports the failure to a robot. The robot moves to the failure location and
replaces the failed node.
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unload functional nodes. In our algorithms, a manager is a
robot that receives failure reports and determines which
robot to handle a specific failure. A maintainer is the robot
that moves and replaces failed nodes. A robot can be both
a manager and a maintainer. Senor nodes serve one
another as guardians and guardees for failure detection.

Fig. 1 presents an overview of the robot assisted sensor
replacement system. Since the number of robots is much
smaller than the number of sensors, the cost is expected
to be lower than requiring most of sensors to have mobil-
ity. Since sensors do not move, the routing algorithm can
be more efficient for delivering sensing data than in mobile
sensor networks. We present three different robot coordi-
nation algorithms: a centralized manager algorithm, a fixed
distributed manager algorithm, and a dynamic distributed
manager algorithm. The centralized algorithm has a central
manager that receives failure reports from sensors and for-
wards them to individual robots. In the two distributed
algorithms, the management responsibility is distributed
over the robots, and each robot functions as both a man-
ager and a maintainer. The three algorithms are compared
in respect to motion overhead and messaging overhead. We
perform simulations of the three algorithms using Glomo-
sim [31], and the experimental results show that (a) the cen-
tralized or the dynamic algorithm can achieve lower
motion overhead, (b) both the fixed and the dynamic algo-
rithms are more scalable but also have higher messaging
overhead.

The rest of the paper is organized as follows. Section 2
gives a formulation of the problem. Section 3 presents three
different algorithms for solving this problem. Section 4
analytically compares the performance of the three algo-
rithms. Section 5 presents experimental results. Finally,
Section 6 discusses related work and Section 7 concludes
the paper.
2. Problem statement

We make the following assumptions in this study:
(a) Sensors are randomly uniformly distributed into a 2-
dimensional field. Their locations are known by
themselves. This can be enabled in the initial deploy-
ment process. The lifetime of a node follows an expo-
nential distribution.

(b) The robots travel at a constant speed and can localize
themselves.

(c) All the sensors and the mobile robots communicate
via wireless links and form a multi-hop wireless
network.

(d) Replacement nodes are at the same locations as the
corresponding failed nodes.

Using mobile robots for sensor replacement is essen-
tially a coordination problem: how to coordinate multiple
robots to maintain a large sensor network, in other words,
to determine which robot should receive the failure report
and which robot should replace the failed node. The prob-
lem can be divided into the following three stages.

(a) Initialization in three steps: (1) Setting up the roles of
robots. A robot may be assigned to be a manager or a
maintainer or both. (2) Setting up the initial relation-
ship between the sensors and the robots. Every sensor
node needs to know which robot is its manager and
the location of the manager. (3) Setting up the guard-
ian–guardee relationship among sensor nodes.

(b) Failure detection and reporting: when a guardian
node detects a failure of its guardee node, the guard-
ian reports the failure to a manager.

(c) Failure handling: once a failure is reported, the man-
ager dispatches a maintainer to the failure location to
replace the failed node with a functional one. When
moving, the maintainer robot may need to update
some other robots or some sensors with its new
location.

The goal of this study is to minimize the motion and the
messaging overhead. The motion overhead is measured as
the energy and the time required for the robots’ movement.
The messaging overhead is measured as the number of
wireless transmissions incurred for failure detection,
reporting, and coordination. Replacement time is also
one of the performance metrics, but it is directly related
to the motion and messaging overhead: lowering the
motion and messaging overhead reduces the replacement
time.

3. Coordination algorithms

The coordination algorithms address two issues: how to
report a failure, and which robot should handle the failure.
We present three algorithms: (a) the centralized algorithm:
a single robot serves as the manager, and all the other
robots are maintainers; (b) the fixed algorithm: the sensor
area is equally divided into fixed subareas and each robot
independently handles one subarea; (c) the dynamic algo-
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rithm: the sensor area is dynamically divided into subareas
based on the robots’ current locations. In this section, we
first describe the centralized algorithm in details. The
description follows the three stages we introduced in the
previous section. Then we present the fixed algorithm and
the dynamic algorithm.

3.1. Centralized manager algorithm

The centralized algorithm has a robot functioning as the
central manager. All failures are reported to the central
manager. It then forwards failures to different maintenance
robots. To simplify the design, we assume the manager
does not move and is located at the center of the area to
balance failure reports from all directions. Fig. 2 shows a
typical scenario of this coordination algorithm.

3.1.1. Initialization

In this stage, there are three types of messages. First, the
manager broadcasts its location to all the sensor nodes and
all the maintenance robots. Second, each maintenance
robot sends a message with its current location to the man-
ager, and broadcasts its location to their one-hop neighbor
sensors, i.e., those sensors that are within transmission
range of the robot. Third, the sensors broadcast their loca-
tions for establishing guardian–guardee relationship for
failure detection. Every sensor receives one message from
each of its neighbors, picks its nearest neighbor as its
guardian, and then sends a confirmation message to the
guardian to establish the relationship. After initialization,
all the sensors and robots know the manager’s location,
the manager knows all robots’ locations, and the guard-
ian–guardee relationship is established.

We use geographic routing protocols in the routing layer
because they utilize location information to reduce the
routing overhead. The location service needed by the rout-
ing layer is provided as part of the coordination algorithms
in the application layer. The location broadcast in the ini-
tialization stage is for this purpose. In the subsequent
stages, when a robot moves, it needs to inform the manager
and some sensors of its new location.
Manager
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Fig. 2. An scenario in the centralized manager algorithm.
3.1.2. Failure detection and reporting

After initialization, each sensor node periodically sends
beacon messages to its one-hop neighbor nodes. If a guard-
ian has not received any beacon from a guardee for a cer-
tain amount of time (three beaconing periods in our study),
the guardian conceives that the guardee has failed and
sends a failure message with the failed node’s location to
the manager. We assume that the probability of both a
guardian and a corresponding guardee fail close in time
is small and negligible, and hence all the failures can be
detected and reported to the manager. Similarly, if a guar-
dee has not received any beacon from a guardian for a cer-
tain interval, it assumes the guardian has failed and selects
a new guardian from its one-hop neighbors.
3.1.3. Failure handling

Upon a failure report, the manager selects a robot based
on the current location of each robot, specifically, the man-
ager selects the robot whose current location is the closest
to the failure. To allow the manager to keep track of the
current location of each robot, whenever a robot moves a
certain threshold distance on its way to replace a failed sen-
sor, the robot updates its location to the manager node, the
robot, via geographic routing and to the one-hop neighbor
sensors via broadcast. The threshold is decided based on
the transmission range. If the threshold is too small, the
update is too often and incurs high messaging overhead.
If the threshold is too large, the robot may be unreachable
sometimes. Upon receiving the request to replace a failed
node, a robot moves to the failed node’s location and
replaces it by a functional node. When the robot is moving
towards a failed sensor node, the robot still can receive
replacement requests from the manager. The robot queues
such requests and handles the failures in a first-come-first-
serve fashion.

The pseudocodes of the centralized algorithm are shown
in Figs. 3–5. They describe the behaviors of the sensors, the
manager robot, and the maintainer robots, respectively. In
the centralized algorithm, the manager has the global infor-
mation of all the failures and all the robots. The algorithm
can be effective for reducing the traveling distance and thus
the motion energy of robots because the manager always
forwards a failure to the closest robot. However, the cen-
tral manager can become a performance bottleneck in a
Fig. 3. A sensor node’s behavior in the centralized algorithm.



Fig. 4. The manager robot’s behavior in the centralized algorithm.

Fig. 5. A maintainer robot’s behavior in the centralized algorithm.

Fig. 7. A sensor node’s behavior in the fixed algorithm.
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large senor network where the distance traveled by the fail-
ure report and replacement request messages become too
long.
Fig. 8. A robot’s behavior in the fixed algorithm.
3.2. Fixed distributed manager algorithm

In the fixed algorithm, the area is partitioned into equal-
size subareas. The number of subareas is the same as the
number of robots, and each robot is assigned with an
equal-size subarea. A robot is both the manager and the
maintainer for its subarea. We consider two types of area
partition methods: squares or hexagons. Fig. 6 shows two
methods. In the initialization stage, the robots first move
to the centers of their corresponding subareas, and then
broadcast their locations to all the sensors within their
subareas. Each sensor node then selects the closest robot
myrobot for failure reports. The setup of guardian–guardee
relationships is the same as in the centralized algorithm,
with the restriction that they belong to the same subarea.
In this way, each robot independently handles failures
within its own subarea. Once a sensor detects a failure, it
reports the failure to its ‘‘myrobot’’. In the failure handling
stage, a robot moves to a failure location and replaces the
failed node.

Similarly to the centralized algorithm, sensors broadcast
their location information to their one-hop neighbors in
initialization. However, the location update of a moving
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Fig. 6. Partition an area into (a) squares and (b) hexagons. The small
squares represent the robots in each subarea and the small circles indicate
failures.
robot is slightly different. Since all the sensors within the
robot’s subarea can potentially report a failure to
the robot, all the sensors in a subarea need to receive the
robot’s location update. To achieve this, all the sensors
relay the robot’s location update. During this process, a
sensor may receive the same update message multiple
times, but it relays the message to its neighbors only once.
This is achieved by remembering the sequence number of
the robot location updates it has relayed before. The
behaviors of the nodes and robots are shown by pseudo-
codes in Figs. 7 and 8.

The fixed algorithm avoids the single manager bottle-
neck problem. However, the traveling distance tends to
be longer as we will show by analysis and simulations in
next two sections. For example in Fig. 6(a) and (b), robots
are shown by small squares and nodes are shown by small
circles. A node fails at location ‘S’, and it belongs to robot
R2’s subarea. For fixed partition algorithm, R2 moves to
‘S’ and replaces the failed node. However, R3 in a neighbor
subarea is closer to ‘S’ than R2. The dynamic algorithm
described in next subsection exploits this possibility by
allowing dynamic area partition.
3.3. Dynamic distributed manager algorithm

As the name indicates, there are no fixed boundaries
between two robots in the dynamic algorithm. The bound-
aries between robots are constructed dynamically as Voro-
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Fig. 9. Voronoi graphs. (a) Original Voronoi graph; a failure happens at
‘S’ inside R1’s subarea. (b) After R1 moves to ‘S’, the Voronoi graph
changes; the original graph is shown by dashed lines. The shading area
shows the area that the robot needs to update its location.

Fig. 11. A robot behavior in the dynamic algorithm.
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noi graphs. Voronoi graphs have been used in wireless
multi-hop networks to study coverage-boundary detection
by Carbunar et al. [5], and to study the coverage problem
by Meguerdichian et al. [15]. Fig. 9 shows a Voronoi graph
of five robots. The Voronoi graph partitions the area into
five convex polygons with one robot in each subarea.
Any sensor within each polygon is closer to the robot in
that subarea than to any other robot. When a robot moves
to replace failed nodes, the Voronoi graph needs to be
adjusted dynamically.

The behaviors of sensors and robots are shown in Figs.
10 and 11. This algorithm dynamically maintains the Voro-
noi graph. This is not realized directly by exchanging loca-
tions between neighbor robots. On the contrary, robots do
not know the border or the sensors they are responsible for.
Instead, each sensor node decides which robot to report a
failure to and sets the robot as its ‘‘myrobot’’. This is
achieved by robots’ dynamic broadcasting their locations
to sensors (line 1 and line 6 in Fig. 11) and sensors’
dynamic updating their myrobots (lines from 8 to 15 in
Fig. 10). Different from the fixed algorithm, the sensors
Fig. 10. A sensor node’s behavior in the dynamic algorithm.
that receive and relay the broadcasting message are not
restricted to the nodes that are currently having the robot
as their myrobot. Some nodes currently in the neighbor
subareas may need to switch their myrobots to the moving
robot, and such nodes may also need to relay the location
update messages. In this way, the nodes update their myro-
bots dynamically to be the closest robot.

In the dynamic algorithm, since a sensor node reports a
failure to the closest robot, the robot achieves similar trav-
eling distance as in the centralized algorithm without suf-
fering the scalability problem. Note, this is achieved at
the cost of high messaging overhead, as the new location
of a moving robot needs to be updated to many sensors.
Compared with the fixed algorithm, the dynamic algorithm
can have higher messaging overhead since some nodes in
the neighbor subareas may also need to relay the location
update messages. We will compare the messaging overhead
in the next two sections.
4. Performance analysis

Our optimization goal is to reduce motion and messag-
ing overhead. We use robot traveling distance to represent
the motion overhead. For messaging overhead, we need to
differentiate two different types of messages: unicast and
multicast. In the centralized algorithm, failure report, fail-
ure forwarding, and robot location update are all unicast
messages. In the distributed algorithms, failure report is
unicast but robot location update is multicast. For unicast
messages, we use message passing distance, the distance
between the sender and the receiver, to represent the mes-
saging overhead. For multicast messages, we use location
update area, the size of the area that the multicast (robot
location update) message reaches, to represent the messag-
ing overhead. All the analysis is normalized relative to the
number of failures.
4.1. Random variables

To compare the performance of the three algorithms, we
assume all of them have the same number of maintenance
robots, n. The whole area has the same size L2 for all the
three algorithm. Each subarea in the fixed algorithm has
a size of l2 ¼ L2

n , and thus l ¼ Lffiffi
n
p . We use A and

a1,a2, . . . , and an to represent the whole area and the n

subareas in the distributed algorithms. We use 2-dimen-
sional variables S1, . . . ,Sk, . . . to represent the failure loca-
tions in the order of their occurring times, where
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Fig. 12. Average robot traveling distance at different number of robots n.
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Sk ¼ ðSx
k; S

y
kÞ represents two coordinates of a location. The

maintenance robots are moving around to replace failed
node. Their locations can be represented by random vari-
ables R1,R2 , . . . ,Rn, and Rm ¼ ðRx

m;R
y
mÞ, m = 1, . . . ,n.

In the centralized or the dynamic algorithms, since the
nodes are evenly randomly distributed over the area and
they are equally likely to fail, the failures S1, . . . ,Sk, . . .
are identical independent distributed (IID) random vari-
ables. The probability distribution function (PDF) of Sk is
f ðSkÞ ¼ 1

L2, if Sk 2A. The robots’ locations R1, . . . ,Rn have
also the same PDFs as failures’ PDFs, but they are not inde-
pendent of each other. The reason is that when a new failure
happens, the decision of which robot is selected to move to
the failure location is not made randomly, but depending
on the robots’ current locations and the failure’s location.

In the fixed algorithm, each robot is confined within its
own subarea; events happened in one subarea are indepen-
dent of the events in other subareas. We can focus only on
one subarea to analyze the fixed algorithm. If Sk happens
in the mth subarea, its PDF is f ðSkÞ ¼ 1

l2, if Sk 2 am. In
the fixed algorithm, R1,R2, . . . ,Rn are and the PDF of Rm

is f ðRmÞ ¼ 1
l2, if Rm 2 am. In the rest of this section, we ana-

lyze the performance for the three algorithms using these
random variables. The fixed algorithm is investigated first
for its simplicity.

4.2. Fixed algorithm

Since all the subareas are independent, we only need to
analyze one subarea.

4.2.1. Motion overhead

For motion overhead, we consider the robot’s traveling
distance from its current location to the failure’s location

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSx

k � Rx
mÞ

2 þ ðSy
k � Ry

mÞ
2

q
. The average value of travel-

ing distance per failure is the expected value of d. Since we
consider one subarea, Sk and Rm are evenly distributed
inside the subarea. As indicated in last section, we partition
the area with two methods, squares or hexagons, shown by
Fig. 6. We run Monte Carlo simulations to get the expected
values of d. For a square-shape subarea with a size of l2, the
expected value of d is 0.5214l; for a hexagon-shape subarea
with the same size1, the expected value of d is 0.5131l.
From the two values, we can see a hexagon partition has
slightly (1.6%) lower average traveling distance than a
square partition.

4.2.2. Messaging overhead

There are three types of messaging overhead: failure
detection (beaconing), failure reporting, and robot location
update. Since failure detection is the same for all the three
algorithms, we only consider the latter two. A failure
report is a unicast message. We investigate the report dis-
tance, the distance between a guardian that reports a fail-
ure and the robot who receives the report. For robot
location broadcast, we investigate location update area.
The guardian’s location and the robot’s location are two
IID and evenly distributed random variables. Therefore,
the failure report distance has the same distribution as
the robot traveling distance d. The expected value of the
failure report distance is 0.5214l for square-shape and
0.5131l for hexagon-shape. The robot location broadcast
reaches all the sensors within the robot’s subarea. There-
fore, the robot location update area is l2.
4.3. Centralized manager algorithm

4.3.1. Motion overhead

The n robots are located at R1,R2, . . . ,Rn. Upon a fail-
ure happening at Sk, the manager compute n distances

dm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSx

k � Rx
mÞ

2 þ ðSy
k � Ry

mÞ
2

q
, m = 1, . . . ,n. Suppose

di = min{d1, . . . ,dn}, the robot Ri is selected to replace the
failure Sk. The average traveling distance per failure is
the expected value of the minimum distance
min{d1, . . .,dn}.

We assume the shape of the whole area A is a square,
and we run Monte Carlo simulations to calculate average
traveling distance with different numbers of robots. The
results at different values of n are shown in Fig. 12. The size
of the area is L2 = nl2, and the average traveling distance is
in fact proportional to l, i.e., Lffiffi

n
p . When n = 1, there is only

one robot and the average distance is the same as the aver-
age distance in the fixed algorithm. When n increases, the
total area size L2 increases proportionally, but the average
distances decreases as shown in the figure. For example, the
average distance decreases from 0.5124l to 0.4762l, or by
8.67%, when n increases from 1 to 9. This shows the cen-
tralized manager algorithm can achieve lower robot travel-
ing distance than the fixed algorithm when there are
multiple maintenance robots.
4.3.2. Messaging overhead

Apart from failure detection, the centralized algorithm
has three types of messages: failure report, failure forward-
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ing, and robot location update. They are all unicast mes-
sages. The failure report is between the manager and a
guardian; failure forwarding is between the manager and
a selected robot; location update is between a robot and
the manager. The location of the manager is fixed at the
area’s center. The message passing distance for all the three
types of messages are a distance between an evenly distrib-
uted random variable and the center of the area. Monte
Carlo simulations show that the average message passing
distance is 0:3821L ¼ 0:3821

ffiffiffi
n
p

l. The message passing dis-
tance increases as n increases.

4.4. Dynamic algorithm

4.4.1. Motion overhead

In the dynamic algorithm, a sensor reports a failure to
the closest robot. Therefore, the traveling distance is the
same as that in the centralized algorithm. The distance
decreases as n increases, shown in Fig. 12.

4.4.2. Messaging overhead

There are two types of messages in the dynamic algo-
rithm: failure report and robot location update, similar as
in the fixed algorithm. The failure report is a unicast mes-
sage between a guardian and a robot. Therefore, the failure
report distance has the same distribution as the robot trav-
eling distance. The average message passing distance is
shown in Fig. 12. The location update is a multicast mes-
sage that reaches both those sensors currently belonging
to the robot, and some sensors in neighbor Voronoi cells
that may change their myrobots to this robot. The broad-
cast area is a union of the robot’s previous Voronoi cell
and the robot’s Voronoi cell after the broadcast and adjust-
ment, as shown by the shading area in Fig. 9 (b).

4.5. Overhead comparison

Table 1 is a summary of this section. We assume the area is
a square and there are 9 maintenance robots, i.e., L2 = 9l2.
From the table, we can draw the following conclusions.

4.5.1. Scalability
The fixed and the dynamic algorithms have better scala-

bility than the centralized algorithm. We can see that the
Table 1
Overhead comparison of the three coordination algorithms with 9
maintenance robots

Algorithm Motion overhead Message overhead (distance/area)

Centralized 0.48l 0:38
ffiffiffi
n
p

l=ðN=AÞ
Fixed (hexagons) 0.51l 0.51l/l2

Fixed (squares) 0.52l 0.52l/l2

Dynamic 0.48l 0.48l/(>l2)

Motion overhead is represented by the average traveling distance per
failure. Message overhead includes the massage passing distance and the
location update area. The value of l is the square root of the size of average
area per robot.
overhead in the fixed and dynamic algorithms does not
increase as n increases, while the message passing distance
in the fixed algorithm increases as n increases.

4.5.2. Motion overhead

The dynamic algorithm has the same motion overhead
as that in the centralized algorithm, while the fixed algo-
rithm has higher motion overhead. This shows that robots
cooperating with each other can reduce the traveling dis-
tance and the motion overhead.

4.5.3. Messaging overhead

In general, the centralized algorithm has lower messag-
ing overhead than the two distributed algorithms. The rea-
son is that all the messages in the centralized algorithm are
unicast, while the location update in the distributed algo-
rithms is multicast. The dynamic algorithm has higher mes-
saging overhead than the fixed algorithm, because the
former has larger location update areas; in other words,
the robot updates its location to more sensors.

5. Experiments

In this section, we compare the relative performance of
the three algorithms using simulations.

5.1. Experimental setup

We use Glomosim to simulate using robots to replace
failed nodes. Glomosim [31] is a packet-level simulator
for ad hoc networks with an accurate radio model. The link
layer uses IEEE 802.11, and the radio model has a nominal
bit-rate of 11 Mbp. We differentiate three types of nodes:
sensors, robots, and manager (for the centralized algo-
rithm). The manager and the maintenance robots have
the same transmission range of 250m, while the sensors
have a transmission range of 63m to save the sensor’s
power.

In our simulations, the sensors are static, and robots
move around to replace sensors. We have implemented
an on-demand mobility model in which robots move on
demand after receiving a failure report. The failure detec-
tion, report and replacement request are implemented in
the application level. We implement a geographic routing
protocol based on face-routing [4] whose implementation
parameters are same as GPSR [13]. The protocol is
described in the next subsection.

In realistic scenarios, the failure happening rate is
expected to be low and robots spend most of the time wait-
ing for failure replacement requests. This conserves the
robots’ energy consumption.

We selected the following simulation parameters: (1)
The average area per robot is 200 · 200m2. (2) The robots’
speed is 1 m/s that is based on the specification of Pioneer
3DX robots [16]. (3) The sensor node density is 50

200�200m2,
i.e., each robot is in charge of 50 nodes on average. (4)
The number of maintenance robots varies from 1 to 16.
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The sensor area and the number of sensors change with dif-
ferent number of robots. For example, with 16 robots, the
sensor area is 800 · 800m2 with total 800 sensors. (5) In the
fixed algorithm, the area is partitioned into squares. (6) The
sensors’ expected lifetime is 16,000 s. (7) The simulation
time is 64,000 s. (8) The sensors’ beaconing period for fail-
ure detection is 10 s. We choose a relatively short expected
lifetime so that the simulation can finish in a reasonable
amount of time, while still showing the relative mainte-
nance overhead for different algorithms.

5.2. Geographic routing and location service

Routing in our system is implemented by geographic
forwarding. As we discussed in Section 2, each node knows
its own geographic location and each robot can localize
itself. During initialization, all the sensors broadcast their
locations to their one-hop neighbors (within the radio
transmission range) and the robots also broadcast their
locations to some sensors and some other robots depending
on the algorithms. Each node maintains the node ID and
location information of its neighbors. Subsequently, a
packet can be routed to a destination node using the local
state at each node. Each packet contains the destination
address in the IP header and the destination’s location
(x- and y-coordinates) in an IP option header. To forward
a packet, a node searches its neighbor table and forwards
the packet to its neighbor closest in geographic distance
to the destination’s location. Under the above greedy geo-
graphic forwarding, forwarded packets may potentially
reach a node that does not know any other node closer
to the destination than itself. This indicates a hole in the
geographical distribution of nodes. Recovering from holes
is possible using approaches such as GFG [4], GPSR [13],
which use planar subgraphs to route around holes.

After initialization, sensors periodically send out bea-
cons to their one-hop neighbors for failure detection. In
addition, when one of the following two events occurs,
extra updates of location information are required. (a)
When a node detects a neighbor sensor node’s failure, it
deletes the failed neighbor from its neighbor table. After
a failed node is replaced, the new node broadcasts its loca-
tion to its one-hop neighbors. The neighbors then add the
new node into their neighbor tables, and also send beacons
containing their own locations. This enables the new node
to set up its own neighbor table. (b) When a robot moves,
the robot needs to send updates containing its new loca-
tion. In the centralized algorithm, the robot updates the
manager and the robot’s one-hop neighbors of its new loca-
tion. In the fixed algorithm, the robot updates all the sen-
sors within it subarea of its new location. In the dynamic
algorithm, some sensors in the neighbor subareas also need
to change their ‘‘myrobots’’ and relay the location update
message. In all the three algorithms, the robot updates its
location whenever it moves away from the last updated
location by a distance threshold. The threshold depends
on the sensors’ transmission range. In the simulations, we
choose this threshold to be 20m, less than 1
3

of the sensors’
transmission range (63m) to ensure that the robots can
receive failure messages all the time.

5.3. Simulation results

We run simulations with three different numbers of
maintenance robots: 4, 9, and 16. We choose square num-
bers to make area partition easy. We skip one robot exper-
iments, since there is little difference among the three
algorithms. For a simulation with k2 maintenance robots,
the total area size is set to be 200 · 200 · k2m2, and there
are a total of 50k2 sensors. For the fixed algorithm, we only
show the results for the square partition method, because
the hexagon partition method shows negligible difference
with respect to the overheads.

5.3.1. Motion overhead

Fig. 13 presents the average traveling distance per fail-
ure with different numbers of maintenance robots. The
dynamic algorithm has similar motion overhead as the cen-
tralized algorithm, while the fixed algorithm has higher
motion overhead. For example, with 16 maintenance
robots, the dynamic algorithm can save 10.8% traveling
distance compared with the fixed algorithm. In the fixed
algorithm, a sensor’s failure is reported to the robot in that
subarea. There is no cooperation between robots and a sen-
sor’s failure is not reported to the closest robot. In the cen-
tralized or the dynamic algorithm, a failure is reported to
the closest robot and the robots coordinate with each other
indirectly. For this reason, the two algorithms have lower
motion overhead than the fixed algorithm.

5.3.2. Messaging overhead

The messaging overhead can be divided into four parts:
initialization, failure detection, failure report, and robot
location update. Since all three algorithms are similar in
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Fig. 15. The average number of transmissions for location update per
failure.
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initialization and failure detection, we focus on the over-
head from failure report and location update.

Fig. 14 shows the average number of hops for failure
reports or replacement requests. Since we use geographic
routing, the number of hops is roughly proportional to
the distance between the report node (sender) and the man-
ager (receiver). The failure reports and replacement
requests are delivered with 100% delivery ratio due to the
high density of sensor nodes and low traffic load in the net-
work. In the dynamic or the fixed algorithm, the failure is
reported from a sensor node to a robot, and the distance
between them is about 100 m on average. This distance
has the same average value as the robot traveling
distance. Since the sensors’ transmission range is 63 m,
passing a message cross 100 m requires at least two hops.
From the figure, the average number of hops traveled by
the failure reports in the dynamic or the fixed algorithm
is stable at about 2. This validates the effectiveness of the
geographic routing. In the centralized algorithm, we con-
sider both failure report and failure forwarding. Statisti-
cally, the distances traveled by failure reports and
replacement requests have the same distribution, and they
increase as the area size increases because the central man-
ager is always at the area center. However, the average
number of hops traveled by failure reports and replacement
requests differ. The reason is that sensors and robots have
different transmission ranges. Failure reports have larger
numbers of hops. The two curves in Fig. 14 for centralized
algorithm show the increasing trend and their difference.
When the area increases, the number of maintenance
robots increases accordingly, and the number of hops in
the centralized algorithm also increases. Therefore, com-
pared with the dynamic or the fixed algorithm, the central-
ized algorithm is less scalable.

Fig. 15 shows the messaging overhead of location
updates in the three algorithms. We use the number of
transmissions as the metric. The dynamic and the fixed
algorithms result in much higher average number of trans-
missions per failure. Also, the dynamic algorithm has a
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Fig. 14. The average message passing hops per failure.
slightly higher number of transmissions than the fixed algo-
rithm, as we discussed in the last paragraph of Section 3.3.
This is because many sensors in the fixed or the dynamic
algorithm need to relay the robot’s location update mes-
sages, while there is no sensor relay in the centralized algo-
rithm. The sensor relays greatly increase the probability
that each sensor can receive the location updates from its
‘‘myrobot’’. However, requiring all the sensors inside the
robot’s subarea to rebroadcast the robot’s location update
may introduce many redundant transmissions. The high
messaging overhead in the two distributed algorithms can
be reduced by using more efficient broadcast schemes
(e.g. [25]) which require only a subset of the sensors in each
subarea to relay the location update messages, or rendez-
vous-based location services such as quorum-based
schemes (e.g. [24]), hierarchical hashing based schemes
(e.g. [14]), or home-region/geographic hashing based
schemes (e.g. [22,7]). This is part of our future work. Com-
bining the two types of messaging overhead, we can see
that the dynamic and the fixed algorithms have higher mes-
saging overhead than the centralized algorithm.

5.3.3. Replacement time

Fig. 16 shows the average replacement time defined as
the duration between a failure and the time the failed sen-
sor is replaced. The time depends on three steps: detection,
report, and handling. On average, the time of failure detec-
tion is the same for the three algorithms. The failure report
time in the centralized algorithm tends to be longer because
the failure report or replacement request travels a larger
number of hops. For the third step, the fixed algorithm
has longer failure handling time because the robot travels
longer to replace a failed node. Adding the three steps
together, the dynamic algorithm has shorter average
replacement time. This is shown in the Fig. 16. With 16
maintenance robots, the replacement time of the dynamic
algorithm is about 10.2% shorter.
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5.3.4. Unevenly distributed failures

A basic assumption in this study up to this point is that
all the sensors have the same failure probability distribu-
tion. However, this may not be true. For example, some
nodes may locate in a swamp and some others on a dry
land. It is easy to understand that the dynamic algorithm
have better adaptivity than the fixed algorithm. Therefore,
with unevenly distributed failures, we expect the dynamic
algorithm to have better advantages than the fixed algo-
rithm. Fig. 17 shows a scenario where the failures has a 9
times higher probability to be happened in half of the area
than in the other half. The failure probability within each
half is evenly distributed. The figure presents the average
traveling distance of the three different algorithms. Com-
pared with Figs. 13, 17 show larger differences between
the fixed algorithm and the dynamic algorithm. With 16
robots, the dynamic algorithm achieves 15.6% lower travel-
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Fig. 17. The average traveling distances with different number of robots.
The failures are 9 times more likely happened in one half of the area than
in the other half.
ing distance than the fixed algorithm. The dynamic algo-
rithm has better adaptivity to the unevenly distributed
failures than the fixed algorithm.

6. Related work

Meguerdichian et al. [15] first address the coverage
problem and use Voronoi diagram to establish an optimal
polynomial-time algorithm for coverage calculation. For
static sensor network, Wang et al. [30] present the Cover-
age Configuration Protocol (CCP) that determines which
sensors should be turned on to achieve the desired coverage
and the rest sensors can be turned off to save energy. Zhang
et al. [32] propose the Optimal Geographical Density Con-
trol (OGDC) protocol to minimize the overlap of sensing
areas of all sensors. Tian et al. [26] propose turning off a
node if its sensing area can be completely covered by its
neighbors. To avoid the possibility of multiple neighbors
turning off and creating a coverage hole, the nodes use a
random back off algorithm before going to sleep. Several
studies have considered using robots for initial sensor
deployment, for example, [3,6].

The above techniques are insufficient to handle the case
where a coverage hole exists even all sensors around the
hole use their maximum sensing ranges. This problem can
be solved by relocating some sensors from the densely
deployed subarea to the holes to amend the coverage. Wang
et al. [27] propose relocating redundant mobile sensors to
fill the coverage holes and using a cascading movement
method to balance the energy cost and the replacement time
of sensor relocation. Ganeriwal et al. [9] propose to make
low energy nodes, on predicting death, broadcast a Panic-
Request message. Nodes with high energy levels respond
with the Panic-Reply message if they can move without
losing existing coverage. Howard et al. [11] propose a
potential fields based approach for self-deployment of
mobile sensor networks. In such potential fields, nodes are
treated as virtual particles and the virtual force between
two nodes is larger if the two nodes are closer. As the virtual
forces repel the nodes from each other, the sensors tend to
form a uniform distribution in the sensor area without
coverage holes. These methods require nodes equipped with
motors, steering devices, and/or GPS. These components
are very expensive while a large-scale sensor network
usually assumes that the sensors are small and cheap.
Meanwhile, higher-capacity batteries may be required for
mobile sensors because mobility is also an energy-consum-
ing feature. Recently, some studies have been focusing on
hybrid sensor networks with both static and mobile sensors
[20,28]. Hybrid sensor network can compensate the
disadvantages of pure static sensor networks without
enabling all sensors mobility. Ingelrest et al. [12] describe
several broadcasting strategies for hybrid sensor networks
in a more general context. However, their strategies primar-
ily optimize broadcasting for fixed infrastructure points.
Our solutions also require multi-hop broadcasting but are
targeted at mobile robot nodes.
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Our previous work [17] presents three coordination
algorithms for using mobile robots to replace failed sensor
nodes. Sensor networks and robots together form an
autonomous system with self maintenance capability.
Compared with the above solutions which use mobile sen-
sors, this approach has more flexibility in designing sensor
networks and are more cost effective. This paper is an
extension over the previous paper. We use random vari-
ables to analyze the main properties of the algorithms.
We add more figures and pseudocodes to explain the three
algorithms. We adopt a new metric, replacement time, to
evaluate the performance of the algorithms. Finally, we
conduct simulations to show adaptivity of the algorithms
to uneven distributed failures.

7. Conclusion

In this paper, we have proposed using mobile robots for
sensor replacement. Sensors detect failures of their neighbors
and report to robots. Robots move and replace failed nodes
with functional ones. We have presented three different algo-
rithms and analyzed their performance by both random vari-
ables and simulations. Simulation results confirm
performance analysis using random variables. It has been
shown that the centralized algorithm is not scalable as the
message passing distance increases with the sensor network
area. The dynamic and the centralized algorithms have lower
motion overhead. The fixed and the dynamic algorithms have
higher messaging overhead. The dynamic algorithm can
achieve 10% lower replacement time than the other two algo-
rithms. The centralized and the dynamic algorithms can
adapt to unevenly distributed failures better. In general, the
three algorithms have different properties, and the optimal
choice of the algorithm depends on specific scenarios and
objectives being optimized. In our future work, we will study
more efficient location update mechanisms to reduce the mes-
saging overhead in the dynamic and the fixed algorithms.
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