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Abstract

Wireless mesh networks (WMNs) have been proposed to provide cheap, easily deployable and robust Internet access.
The dominant Internet-access traffic from clients causes a congestion bottleneck around the gateway, which can signifi-
cantly limit the throughput of the WMN clients in accessing the Internet. In this paper, we present MeshCache, a trans-
parent caching system for WMNs that exploits the locality in client Internet-access traffic to mitigate the bottleneck effect
at the gateway, thereby improving client-perceived performance. MeshCache leverages the fact that a WMN typically
spans a small geographic area and hence mesh routers are easily over-provisioned with CPU, memory, and disk storage,
and extends the individual wireless mesh routers in a WMN with built-in content caching functionality. It then performs
cooperative caching among the wireless mesh routers.

We explore two architecture designs for MeshCache: (1) caching at every client access mesh router upon file download,
and (2) caching at each mesh router along the route the Internet-access traffic travels, which requires breaking a single end-
to-end transport connection into multiple single-hop transport connections along the route. We also leverage the abundant
research results from cooperative web caching in the Internet in designing cache selection protocols for efficiently locating
caches containing data objects for these two architectures. We further compare these two MeshCache designs with caching
at the gateway router only.

Through extensive simulations and evaluations using a prototype implementation on a testbed, we find that MeshCache
can significantly improve the performance of client nodes in WMNSs. In particular, our experiments with a Squid-based
MeshCache implementation deployed on the MAP mesh network testbed with 15 routers show that compared to caching
at the gateway only, the MeshCache architecture with hop-by-hop caching reduces the load at the gateway by 38%,
improves the average client throughput by 170%, and increases the number of transfers that achieve a throughput greater
than 1 Mbps by a factor of 3.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Wireless mesh networks [2] are characterized by
mesh routers connected by wireless links to each
other and to a few gateway nodes. Recently, the
deployment and use of WMNs has increased signif-
icantly and several cities have planned and/or
deployed WMNSs [43,49,48,42,45,47]. Thus, improv-
ing WMN performance will have a direct impact on
a growing population of users. The most significant
application of such networks is to provide broad-
band Internet access to static or mobile hosts in
areas where wired infrastructure is difficult or eco-
nomically infeasible to deploy. Since all Internet-
access traffic flows through one or a limited few
gateway nodes, it can cause significant congestion
around the gateway.

Previous studies have shown that significant
locality exists in Internet accesses from a given
population of clients. Web caching has been pro-
posed and extensively studied to exploit such local-
ity in reducing the Internet-access traffic and the
client-perceived access latency. We anticipate that
similar locality will exist in the Internet-access traffic
in WMNSs once they become widely deployed. In
this paper, we exploit such locality among the client
Internet-access traffic in a WMN and explore con-
tent caching to mitigate the congestion bottleneck
at the gateway nodes of a WMN.

One way of exploiting locality in client Internet
accesses in a WMN is to have the client nodes in
the WMN form a peer-to-peer network and perform
cooperative caching directly with each other [18,40].
However, we argue that this approach has several
disadvantages: (1) It does not leverage the available
infrastructure in a WMN, i.e. the mesh routers; (2)
It faces deployment challenges as it is non-transpar-
ent to clients and requires clients to contribute
resources; (3) It requires the cooperative caching
protocols to deal with churn and mobility of clients,
e.g., clients could leave in the middle of a download;
(4) It needs to deal with security and privacy issues
in the presence of malicious clients which is not an
issue if the infrastructure is deployed by a single
service provider (e.g. Google WiFi). To avoid these
disadvantages, in this paper, we focus on transpar-
ent cooperative caching at the mesh routers.

In this paper, we propose MeshCache, a trans-
parent cooperative caching system that exploits
locality in Internet-access traffic in a WMN to mit-
igate the gateway bottleneck effect. Unlike transpar-
ent web caching in the Internet where a web cache is

Table 1
Mesh router hardware specifications popular in WMNs

Mesh router device Processor
speed (MHz)

Memory  Storage

MeshCube 400 64 MB USB
expandable

LocustWorld 500 128MB  USB
MeshBox expandable

Soekris net4801 266 128MB  USB
expandable

Netgear 200 32 MB USB
WGT634U expandable

iBox Slim Mini- 533 Up to USB
ITX PC 1GB expandable

Metrix Mark 11 233 64 MB USB
expandable

attached to the gateway of an organization, Mesh-
Cache leverages the fact that a WMN typically
spans a small geographic area and hence mesh rou-
ters are easily over-provisioned with CPU, memory,
and disk storage, and extends the individual wireless
mesh routers in WMN with built-in content caching
functionality. It then performs cooperative caching
among the wireless mesh routers. Currently avail-
able mesh routers (summarized in Table 1) have
good processing speeds and can be expanded easily
with USB-based or microdrive storage to also per-
form caching.

Cooperative caching among mesh routers allows
clients to fetch cached data from routers within the
WMN. This spreads the load in the network and
hence alleviates the congestion around the gateway.
In addition, cooperative caching among mesh rou-
ters in a WMN has two other performance benefits:
(1) Cooperative caching allows clients to potentially
obtain content from nodes closer (in network hops)
than the gateway. This improves the client through-
put since the throughput falls rapidly with the
increased hop count in multi-hop wireless networks.
Further, such local communication improves the
capacity of WMNSs as they scale in size [25]. (2)
When there are multiple cached copies of the
requested content in the network, cooperative cach-
ing enables clients to choose the best cached copy
based on high throughput link-quality routing met-
rics (e.g. [9]), thereby further improving client
throughput.

In this paper, we explore two architectural design
choices for MeshCache (A2 and A3 below), and
compare it to a third one (A1), which is similar to
the typical way that a web cache is deployed in
the Internet:
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e Al: A web proxy cache is connected to the WMN
gateway node similar to how a web cache is
attached to a gateway router in the Internet. This
proxy cache transparently hijacks clients’ content
requests to exploit the locality within the client
population of a WMN.

e A2: Each mesh router acts as a cache using
expandable storage devices. When a client issues
a request for a data object, its access mesh router
transparently hijacks the request and searches for
the object in its local cache. On a hit, the object is
simply served from the access mesh router. On a
miss, the access mesh router searches for a cached
copy of the data object in other mesh routers
including the gateway. If a copy is found, the
access mesh router fetches the copy, otherwise
it obtains the object from the origin server via a
proxy cache at the gateway (as in Al).

e A3: In addition to A2, when the data object is
fetched either from a gateway or another mesh
router along a multi-hop route, the object is
cached at each mesh router along the route. This
increases the availability of the data object for
future requests without explicit replication. To
enable such hop-by-hop caching, we use per-hop
transport that breaks a single end-to-end trans-
port connection, e.g. S to D using route S-A-
B-D, into multiple single-hop transport connec-
tions along the route, e.g. S-A, A-B, B-D, and
pipelines data over these sub-connections. This
enables the data object to be cached at A and B
in addition to S.

The architectures A2 and A3 require a cache
selection protocol to locate a cached copy of content
and/or choose among multiple cached copies. To
this end, we design and compare three cache selec-
tion protocols for MeshCache. Our designs leverage
the abundant research results from cooperative web
caching in the Internet.

We vigorously evaluate the performance of
MeshCache using simulations and testbed exper-
iments. Our evaluation results shows that A3
(cooperative caching with hop-by-hop caching) out-
performs the other architectures in reducing the
gateway load and improving the client throughput,
irrespective of the cache selection protocol used.
Additionally, we found that the per-hop transport
for hop-by-hop caching in A3 provides increased
content availability without adversely affecting
transport throughput or network overhead com-
pared to end-to-end transport. Further, for the best

performing architecture A3, we found that the
cache selection based on limited broadcast flooding
is the best strategy to alleviate the gateway bottle-
neck and obtain throughput improvement. Particu-
larly, our simulations showed that: (1) A2 increased
client throughput by up to 50% and reduced gate-
way load by up to 35% compared to Al, (2) A3
increased throughput by up to 52% and reduced
gateway load by up to 66% compared to A2, and
(3) the best cache selection strategy for A3 is based
on limited broadcast flooding and provides a reduc-
tion in gateway load by up to 20% compared to a
strategy with no search delay or overhead. Our
smaller scale testbed experiments also show that
MeshCache can improve the overall throughput
and reduce the network load significantly. Specifi-
cally, measurement results from a deployed imple-
mentation of MeshCache on the 15-router MAP
mesh network testbed [28] show that the number
of transfers that achieve a throughput greater than
1 Mbps is increased from 20% in Al to 60% in A3
while the load at the gateway is reduced by 38% in
A3 compared to Al.

The contributions of this paper are summarized
as follows: (1) We propose to alleviate the bottle-
neck at the WMN gateway that commonly arises
in WMNs by exploiting locality in client Internet
accesses. (2) We present a practical cooperative
caching system, MeshCache, and explore the
design space of the MeshCache architecture and
the associated cache selection protocols via exten-
sive simulations. (3) We design and implement the
MeshCache system by modifying an open-source
caching proxy, Squid, developed for the Internet,
and demonstrate the benefit of MeshCache using
an implementation deployed over a mesh network
testbed of 15 mesh routers.

The remainder of the paper is structured as
follows. Section 2 presents a feasibility study of
MeshCache by analyzing the potential locality in
WMN traffic. Section 3 presents various architec-
tural design choices for MeshCache and Section 4
presents various cache selection algorithms for
MeshCache. Section 5 presents our simulation
methodology and Section 6 presents detailed simu-
lation results comparing different MeshCache archi-
tectures and cache selection algorithms. Section 7
presents the system design and implementation of
MeshCache in a WMN testbed and Section §
presents the measurement results from the testbed.
Finally, Section 9 discusses related work and
Section 10 concludes the paper.
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2. Motivation

In this section, we motivate the cooperative cach-
ing approach of MeshCache by assessing the extent
of locality in the Internet-access traffic expected to
be carried by a WMN.

It has been shown that Internet-access traffic has
substantial locality [7], i.e., multiple users are likely
to request some common data objects from the
Internet. Since WMNSs primarily carry Internet-
access traffic, significant locality is also expected to
exist in the traffic of a WMN. However, the extent
of locality in the traffic is dependent on the size of
the client population. A fundamental question that
determines the potential performance benefits of
MeshCache is whether there exists significant local-
ity in Internet-access traffic in a WMN, given the
small client population served by each gateway
router.

While no measurement study has been performed
specifically for Internet client traffic in WMNs, we
can approximate the client population served by a
gateway node of a WMN with that seen by the gate-
way proxy cache of a small organization. For such
an approximation, we analyzed real web proxy
traces collected in the week of October 19, 2005
by www.ircache.net. The collective trace of 1 day’s
traffic from 10 proxies contains 2.7 million requests
originating from 1151 unique clients to 81,289 serv-
ers. The number of clients and requests in each
proxy’s trace are depicted in Fig. 1a and b, respec-
tively. The number of clients in each trace ranges
from 80 to 160 nodes which is a potential target size
for a WMN with a single gateway. For example, a
recent work [14] shows that 114 users can poten-
tially be supported with a 21 mesh router WMN.

We studied the locality and working set size of
the cacheable content in each trace.! The locality
in the access patterns of such a small set of clients
is encouraging as the average hit rate is around
37% with a maximum of 46% (Fig. 1c). This sug-
gests that a significant fraction of requests can be
fetched from peer mesh routers if caching is
enabled. The hit rate also tends to increase with
the client population. We note these observed hit
rates are consistent with other studies [18,38] on
web caching using different proxy traces for client

! Similar to in [18], we consider requests with SSL and dynamic
content as not cacheable and always resulting a miss. We also
limit the maximum size of any single cacheable object to 16 MB
similar to many deployed web caching systems.

populations of similar sizes. To study how the client
population affects the hit rate, we combined all the
traces into one trace and simulated different client
population sizes ranging from 50 to 500. For each
population size k, we selected all the requests from
k randomly chosen clients and ran a simulation to
find the hit rate and the working set size. For each
k, we tried 25 random trials to find average beha-
vior. The results in Fig. le show that the hit rate
increases gradually from 35% to 45% as the client
population grows from 50 to 500. In summary,
there is significant locality to exploit in smaller client
populations such as those in WMNSs.

Another property of the Internet-access traffic
which determines the feasibility of caching is the
working set size of the traffic. Fig. 1d shows the
working set of a day’s worth of traffic to be
1.3 GB on average with a maximum of 2.6 GB.
We also measured the working set size as a function
of the client population. Fig. 1f shows that as the
client population grows from 50 to 500, the working
set size grows from 500 MB to 5.2 GB for a day’s
worth of traffic. These sizes can be accommodated
in current mesh routers throughput expandable
storage devices.

3. MeshCache architecture

Before discussing the architectural design choices
for MeshCache, we present our basic network
model. Without loss of generality, this paper
assumes that MeshCache is deployed in a WMN
similar to RoofNet [43], consisting of single-channel,
single-interface 802.11 mesh routers with omnidirec-
tional antennas and sparsely deployed gateways for
Internet access. The gateways are not widely
deployed due to cost and uplink constraints. A
similar architecture can also be used for corporate
networks to replace wired access-point-based
WLAN systems [14]. Fig. 2a depicts a typical net-
work setup.

Such a WMN provides Internet access as follows:
Each client’s packets are first received by the client’s
access mesh routers, i.e., a mesh router the client’s
interface is associated with (e.g., MR 1 and MR 6
are access mesh routers for their clients). These
mesh routers then forward the packets to the gate-
way mesh router (GMR) using other mesh routers.
The GMR provides Internet connectivity through
a high bandwidth wired/WiMax interface. The gate-
way may perform other functions such as IP address
assignment or NAT. All the MRs use a routing
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protocol (e.g. AODV) with metrics such as ETX [9], formed to exploit locality and the implications of
ETT [13] to find routes to each other and to the such choices.
gateway. We assume that clients use TCP at the

transport layer as it is widely used for Internet (a) Architecture 1 (Al): In Al, a caching proxy is
access. Further, we assume that the WMN employs connected to the WMN gateway node similar
a 802.11 MAC layer. As shown in Fig. 2b, the to how a web cache is attached to a gateway
MeshCache system is implemented over this under- router of an organization in the Internet. Cli-
lying WMN by a user-level MeshCache daemon. ent requests are transparently hijacked at the
GMR and redirected to the caching proxy.

3.1. Architectural design choices As the results in Section 2 showed, the hit
rates in the attached caching proxy are

We now discuss the architectural design choices expected to be in the range of 30-40%, result-

for MeshCache that differ in where caching is per- ing in significant bandwidth savings between
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the GMR and the origin server. The requests
with hits in the caching proxy could also have
higher TCP throughput as they will not be
affected by TCP’s inefficiencies in traversing
wireless-wired links [39]. However, the bottle-
neck at the gateway still remains since the
medium access load around the gateway is
not reduced in this architecture.

(b) Architecture 2 (A2): A key observation in

WDMNEs is that a WMN typically spans a small
geographic area and hence mesh routers are
easily over-provisioned with CPU, memory,
and disk storage, and the MRs themselves
can be potentially leveraged to cache content
and provide further performance improve-
ments. A survey of hardware specifications
(Table 1) of some popular choices for imple-
menting MR devices shows that these devices
already have adequate processing power to
implement a caching proxy. Unlike high-end
web proxies and routers which service thou-
sands of connections simultaneously, the
smaller scale of a WMN reduces the computa-
tional load on the MRs and makes imple-
menting a caching proxy on each of them
computationally feasible. In addition, all of
the devices can be expanded to include USB
flash drives (which can store 4-8 GB cur-
rently) and some can even use USB hard
drives with capacities of up to 20 GB. The
small form factor and declining cost of the
USB flash drives makes them a suitable candi-
date for addressing the storage needs of mesh
routers. Moreover, Section 2 shows that the
working set of a small client population is
small enough to be accommodated by these
USB devices. Cooperative caching at all the
MRs further reduces the individual cache sizes
required to accommodate the working set.

To exploit the above observation to enhance
MeshCache’s performance, in architecture
A2, all MRs performs caching in addition to
routing. When a client requests content, its
request is transparently hijacked by the client’s
access MR and the content is searched for in
the access MR’s cache. On a local hit, the con-
tent is simply served from the access MR.
However, on a local miss the access MR
searches for a cached copy of the content in
other MRs (including GMR). If a copy is
found, the access MR fetches the copy, locally
caches the content and returns it to the client.

Otherwise, the access MR fetches the content
from the origin server via a proxy cache at
the gateway (as in A2), locally caches the con-
tent, and returns it to the client. Thus, the
main difference between A2 and Al is that
all MRs can cache data if they are required
to. They could cache content simply because
they are the access MR or for example, if the
content is hashed to them.

(c) Architecture 3 (A3): Architecture A3 builds on
A2 and pushes the cooperative caching tech-
nique to the extreme. Note that when content
is fetched either from the origin server (via
GMR) or another mesh router along a
multi-hop route, the MRs along the path over
which data flows can also cache the data. This
increases the availability of content for future
requests without explicit replication. Increased
availability of data improves the cache hit
rate and reduces the path length of future
requests.

Ideally, this increased availability of cached con-
tent can be achieved without extra overhead if each
node along the path can snoop network layer pack-
ets to assemble an entire file. However, this is
difficult to achieve in practice because: (1) Routing
paths may fluctuate during a transfer and the bytes
of a file may travel different paths. (2) Routing paths
in forward and reverse directions may be different in
many cases, e.g., due to unidirectional links. We
found this to occur in our testbed (Section 8). (3)
Even if all bytes of a file pass through each MR in
a path during its download, it is difficult to decipher
the transport and application protocol states to
assemble the packets into the application file.

To enable hop-by-hop caching, we resort to
per-hop transport. Per-hop transport breaks a single
end-to-end transport connection, for example, from
S to D using route S-A-B-D, into multiple single-
hop transport connections along the route, e.g., S—
A, A-B, B-D, and pipelines data on these sub-con-
nections. This allows the data object to be cached at
A and B in addition to S while it flows through the
route. Thus, content is transferred over an N-hop
path through N pipelined transport connections,
resulting in the file being cached at each intermedi-
ate node in its entirety. This per-hop transport
mechanism essentially fixes the route for the dura-
tion of a file transfer in order to cache it along the
path. We argue that this is viable since most content
requests (i.e. HTTP) are small in size, and hence the
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underlying routing path is unlikely to deteriorate in
the time the route is fixed. Note that per-hop trans-
port precludes unidirectional links from being used
for transferring content since a bi-directional TCP
handshake is required at each hop. In summary,
A3 is similar in operation to A2, except that when
the a data object is fetched, the object is cached
at every hop along the route by using per-hop
transport.

In hop-by-hop transport, all the mesh routers
along a path (including the gateway) initiate persis-
tent connections, which simply replay client/server
behavior. Only when the client or server explicitly
closes the connection, all the hop-by-hop connec-
tions will close. Thus, if the client’s browser uses a
persistent HTTP connection, the persistent connec-
tion semantics is preserved from the client’s point
of view.

While A3 maximizes the opportunities for cach-
ing among the wireless mesh routers, the per-hop
transport requires data packets to traverse up the
TCP/IP stack at every hop which incurs extra over-
head and delay compared to the end-to-end trans-
port. We study these issues thoroughly in Section
6.1. In addition, per-hop transport requires per-con-
nection state to be set up on all nodes along the
path. While this may not be a good idea in mobile
ad hoc networks which typically consist of resource
constrained devices, it is less of a concern for the
mesh routers which are less resource constrained.

An important component in both architecture
designs A2 and A3 is an efficient cache selection
protocol to locate a cached copy of the content.
We next discuss the design choices of a cache selec-
tion protocol.

4. Cache selection protocols

The design of cache selection protocols has been
widely studied in the context of Internet web cach-
ing systems. Thus, we first provide a brief back-
ground of the approaches used in the Internet and
draw inspiration from them in designing coopera-
tive cache selection protocols for WMNS.

4.1. Cooperative caching in the Internet

Several previous works have proposed coopera-
tive cache selection protocols for the Internet. The
works in [10,8] introduced hierarchy-based selection,
i.e., using a hierarchy of caches that resolve
MISSES from lower levels of the hierarchy until

the root is reached which fetches content from the
origin server. Another technique of reactive query-
based selection is exemplified by ICP [36] which on
a MISS, queries its peer caches for the content item
and chooses one of them to forward the request to.
To remove the delay and processing overhead of
query-based selection, hash-based selection (e.g.
CARP [35]) has been proposed in which on a MISS,
a cache fetches the content item from a cache
selected by hashing the content item’s URI
(Uniform Resource Identifier). Finally, in proactive
dissemination-based selection [15,32], caches proac-
tively distribute summarized information about
their cached content items (using Bloom filters) to
each other to remove the delay penalty from
queries.

However, the solutions proposed for cooperative
cache selection in the Internet domain are not directly
applicable to MeshCache for the following reasons:
(1) They do not optimize the network overhead in
terms of the number of packets in the system which
is important in WMN:Ss. (2) They fail to incorporate
advantages possible from the broadcast nature of
wireless communication. (3) Since the mesh router
itself is a cache in a WMN, unique cross-layer
approaches can be designed to improve the cache-
selection schemes (e.g. consulting the underlying
routing protocol to choose from multiple cached
copies based on routing metrics such as ETX [9)).
Solutions developed in the Internet can only exploit
the caches themselves and not the routers in
between to perform cache-selection decisions. Thus,
they are restricted to using application-specific
metrics such as end-to-end latency.

In the next section, we explore the design space of
cooperative cache selection protocols for the
MeshCache system. The design for these cache
selection protocols is inspired by their counterparts
in the Internet, but have been adapted to operate
efficiently in the wireless environment. All the proto-
cols are implemented at the application layer to
allow them to be useful for a multitude of WMN
architectures. For example, they should be able to
operate on top of source routing as well as hop-
by-hop routing protocols. Additionally, they should
operate over and be able to exploit protocols imple-
mented with new routing metrics or multi-channel
multi-radio devices [12,30]. They should also be
operable with any new transport protocol that
may be invented for WMNs. At the same time,
these protocols should leverage the information
exposed by the underlying layers using a cross-layer



S.M. Das et al. | Ad Hoc Networks 5 (2007) 680-703 687

approach to enhance their performance. To satisfy
both these requirements, MeshCache adopts a loose
coupling principle whereby MeshCache cache selec-
tion protocols interact with underlying layers via a
set of predetermined APIs. This enables portability
to any underlying layer that provides the APIs as
well as performance benefit arising from the interac-
tion with lower layers.

4.2. Cache selection protocols for architecture A2

The cache selection protocol in MeshCache
should select a suitable MR for each content item,
and retrieve the content from the chosen MR. In
the following, we present a set of design choices
for the cache selection protocol.

1. Tree-based hierarchy cache selection protocol
(THCP): This is a basic scheme in which the access
MR simply routes the content request to the GMR
(gateway) in case of a local miss. The access MR
selects the current best gateway® by querying the
routing protocol (through an API BestGateway())
and forwards the request to the corresponding
GMR. This is a two-level hierarchy-based cache
selection approach with the GMRs being the parent
caches for other MRs. We do not perform gateway
selection at the application layer in any cache selec-
tion protocol because the routing protocol has more
fine-grained information about the best gateway,
through probing of link metrics such as loss rates
[9], latency [1] or complex metrics that take into
account link bandwidths and loss rates in the pre-
sence of multiple radios and multiple channels [13].

Following the selection of a GMR, an end-to-end
transport connection is established to the selected
GMR via a multi-hop network layer path and the
content transferred.

2. Broadcast cache selection protocol (BCP):
While THCP does not cause search overhead or
search delay, it can only exploit local hits at each
access MR and hits at the selected GMR, and not
at the caches of other MRs in the vicinity. In con-
trast, the broadcast-flooding search-based protocol
(BCP) can locate content items in other MR nodes.

In this protocol, on a local miss, the access MR
first queries the routing protocol for the path metric,
say ETT (expected transmission time) [13] X, to the
closest gateway (through an API BestGateway Met-

2 There may be multiple gateways advertising Internet connec-
tivity in a WMN.

ric()). The access MR then initiates a UDP broad-
cast of a content locate message by inserting the
metric X, a search path metric Y= 0 and a locally
unique sequence number. As the content locate mes-
sage is propagated, each node rebroadcasting the
message exactly once based on the sequence num-
ber. In doing so, each node also adds the ETT to
the node it got the packet from into the value Y
when rebroadcasting the message. If at some node
the value Y exceeds X, there is no need to search fur-
ther since the originating node already has a better
path, i.e., to the gateway, and the broadcast is ter-
minated at the node. In this manner, the broadcast
search is limited to paths better than the one to the
gateway.

Each node that has a hit in its local cache for the
content item replies with a content found message
and does not rebroadcast the content locate mes-
sage. The access MR then queries its routing proto-
col to find a node with the best path metric from
among those that had hits (through an API Best
Node({node IP list))) and selects the MR returned
by the API to fetch the content. Note that if all
nodes with hits have a worse routing metric than
the gateway or no other nodes have a cached copy
of the content, the gateway itself is chosen (same
as THCP). The data is once again transferred over
a multi-hop network layer path.

Another important parameter in BCP is search
timeout (ST) which is the amount of time a node
should wait to receive replies from a broadcast
search before reverting to the default behavior
(THCP). BCP uses the following technique to esti-
mate ST: Whenever a new closest gateway is discov-
ered by the routing protocol, a node pings that
gateway once to get an approximation for the round
trip latency from the node to the gateway. This ping
time is then used by BCP as the search timeout.
Effectively this method adapts the search timeout
at each node with respect to its closest gateway.

BCP draws its inspiration from the ICP protocol
for the Internet. However, there are some important
differences in the operation of the two protocols.
First, BCP exploits wireless multicast advantage
(WMA), i.e. the ability to deliver multiple query
packets with a single transmission [37]. Second,
the scope of the BCP queries is limited by exploiting
the proximity of the gateway. Both these differences
reduce the overhead and the delay of BCP com-
pared to ICP. Thus we take an approach of loose
coupling between the two layers: Search at the
application layer and determine the best cache by
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querying an API that can be provided by any rout-
ing protocol with a few modifications.

3. Geographic hash cache selection protocol
(GHCP): In GHCP, on a local miss, the access
MR uses a well-known hash function to hash the
content item’s URL and maps it to a MR whose
nodelD (hash of IP) is numerically closest to the
hash of the URL.? The request is then forwarded
to the hashed MR with the expectation that a hit
will occur since all requests for that particular
URL are redirected to the hashed MR. If the hashed
MR has a miss, it uses THCP to fetch the content.

Unlike Internet hash-based cache selection pro-
tocols, GHCP controls the proximity of MRs to
which the content items are hashed. The hash is
not done globally by considering all the MRs in
the WMN (in which case the path lengths to the
hashed MR could increase dramatically). Instead,
the entire area is divided geographically into virtual
squares (grids), and each node hashes the URL by
considering only other MRs contained in its own vir-
tual grid. The grid size is a tradeoff between exploit-
ing locality and the path length. If it is too small,
there likely will be no locality and no hits; if it is
too large the hash point will be far away and thus
the throughput will either be bad or the gateway
will always be chosen. To balance the tradeoff, we
chose a grid size equal to 500 m x 500 m in our
evaluations.

In GHCP, if the hashed MR is still determined
(by querying the routing protocol) to be worse in
routing metrics than the best gateway, the request
is simply redirected to the best gateway. Note that
this scoped hashing requires knowledge of the
global virtual grid boundaries and locations of the
MRs to determine the MRs in each node’s virtual
grid. In a static WMN network, locations of mesh
routers and grid boundaries can be encoded during
deployment. We use this one-time encoding method
in our testbed. Other deployed testbeds such as
RoofNet [43] also maintain the GPS coordinates
of their MRs.

4.3. Cache selection protocols for architecture A3
The difference between the architectures A2 and

A3 is that when content flows back to the access
MR in A3, it is cached at nodes along the way. This

3 This is consistent hashing, same as that used in DHTs in the
Internet.

caching is enabled by per-hop transport. Per-hop
transport naturally forms a chained (hierarchical)
organization of the caches along the way which
can be leveraged to further optimize the cache selec-
tion protocols in A3. Both THCP and GHCP ben-
efit from this optimization by searching for the
request data object in this chain of caches in addi-
tion to the caches selected by their cache selection
algorithms. The cache selection protocols for A3
are described below.

1. Per-hop tree-based hierarchy cache-selection
protocol (PH-THCP): PH-THCP is an optimiza-
tion of THCP when architecture A3 is used. In this
scheme, the access MR, on a local miss, selects a
best gateway G as before and then finds the next
hop node for G by querying the routing protocol
(through the API GetNextHopForNode(G)) and
establishes a transport connection to that next hop
node. For example, in Fig. 3 MR 4 has a miss in
its local cache and consequently contacts MR 2.
MR 2 repeats this process and on a miss forwards
the request to the next hop towards G. If any inter-
mediate node has a hit, it sends the content back to
MR 4 and does not search further. Each node on
the path then automatically caches the content as
it is downloaded through hop-by-hop transport
connections. Subsequently, when MR 1 has a miss
and contacts MR 2, a hit occurs due to hop-by-
hop caching and the content is fetched directly from
MR 2.

2. Per-hop broadcast cache-selection protocol
(PH-BCP): PH-BCP is a per-hop variant of the
BCP protocol for architecture A3. In this scheme,
the method to select the MR with the requested con-
tent is same as in BCP. The only difference is that
the content is transferred via per-hop transport
from the selected MR. Also, if no hits occur or
the metrics for all the hits are worse than the gate-
way, the access MR reverts to using PH-THCP to
forward the request to the gateway. For example,
in Fig. 3, MR 7 has a miss in its local cache and
no hits from the broadcast search. It then uses
PH-THCP to fetch the content from the gateway
through MR 6. Subsequently, when MR 1 performs
a broadcast search for the same content item, it
receives a hit from MR 6 from where it receives
the content, again with per-hop caching. Thus,
MR 1 achieves better performance due to broadcast
search and hop-by-hop caching compared to using
end-to-end transport over the default path of 1-2—
3-GW (shown with dotted line). PH-BCP has a
delay penalty associated with it, but can be better
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Fig. 3. Design choices for cache selection protocols.

at spreading load, as the content may be fetched
from a node not on the path towards the gateway.

3. Per-hop geographic hash cache selection proto-
col (PH-GHCP): PH-GHCP is a per-hop variant
of the GHCP protocol for architecture A3. In this
scheme, the access MR upon a local miss hashes
the URL of the content item to a MR in its virtual
grid (say B), similar to in GHCP. If B is closer than
GMR, it then finds the next hop node towards B by
querying the routing protocol (through the API Get-
NextHopForNode({(nodeIP))) and the request is
forwarded in a hop-by-hop fashion to B. If an inter-
mediate node has the content, it does not forward
the request further and replies to the access MR.
Note that it is possible B itself does not have the
content, e.g., if this is the first request for a content
item. In this case, B reverts to PH-THCP to retrieve
the content from the gateway and forward it to the
access MR. For example, in Fig. 3, MR 7 hashes the
URL to MR 6 which on a miss fetches the content
from the gateway. Subsequently, MR 1 also needs
to retrieve the same content item and thus hashes
the URL to node 6 from which the content item is
retrieved in a hop-by-hop fashion improving perfor-
mance from its default route of 1-2-3-GW. Note
that although PH-GHCP has no query delay, it
can cause detours in routing paths without any ben-
efit for unpopular content items since they result in
a miss at the hashed MR.

Finally, we argue that the approach of proactive
dissemination of content indices used in Internet
cooperative web caching is not suitable for WMNs
(both A2 and A3) as proactive message exchange
can cause high overhead to the wireless network.
Nodes would have to proactively flood the network

whenever they cache a new object, a cached object
expires, or a cached object is evicted.

Note that in all protocols, we implement the
routing protocol API to only provide next hop
nodes that are connected bi-directionally. In the
absence of this feature, hop-by-hop transport con-
nections cannot be established.

5. Methodology

In the next section, we examine the feasibility of
per-hop transport by comparing it to end-to-end
transport, and compare the Al, A2 and A3 Mesh
Cache architectures and the associated cache-selec-
tion protocols through detailed simulations. We
describe our methodology for those experiments in
this section.

We use the Glomosim simulator [41] to evaluate
MeshCache. Glomosim has been widely used to
study multi-hop wireless networks.

(a) Network model: We simulate a static mesh net-
work of 50 mesh routers placed randomly in
an area of 1000 m x 1000 m. Each node is
assumed to have one interface equipped with
an omnidirectional antenna. All the sources
communicate with the gateway node to simu-
late an Internet access pattern. The two-ray
path loss propagation model is used. We also
evaluate the performance under fading (Ray-
leigh) and lossy conditions.

(b) Client behavior model: Each mesh router
aggregates queries from five clients. For each
individual client, a successive request arrives
after the current request has been served.
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However, the mesh router may service
requests from different clients concurrently.
The file request model is similar to previous
caching studies [40].* The file request pattern
of each client is based on the Zipf-like distri-
bution that has been found to model web
traces. The value of the Zipf parameter 6
was chosen to be 0.8 based on measurements
on web traces and similar to in previous signif-
icant studies in this area [40]. Similar to in [40],
we used a request pattern in which nearby
nodes have similar, although not the same
request popularity distribution. The user
browsing behavior is simulated using the
model developed in [26]. This model also
allows us to simulate the size of HTTP items
retrieved, number of items per “Web page”,
and think time (the time elapsed between suc-
cessive web page downloads from each user).
We assume that 25 mesh routers have active
clients.

Content model: We assume a set of 1000 files
with file sizes between 1 and 100 KB from
which each client makes a request based on
the Zipf distribution. Similar to in [40], con-
tent items have a TTL of 5000 s. The mesh
router cache size is set to 2 MB due to the
working set size and length of the experiment.
Note that a production system will use much
larger caches using expandable flash storage
and main memory. Finally, we use the LRU
cache replacement policy used in the extended
Squid [46] caching proxy evaluated in our test-
bed evaluation in Section 8.

Routing, transport and MAC: We currently use
TCP as the reliable transport protocol in our
study since it is widely used and available as
a standard part of operating systems. The
routing protocol used is AODV, same as that
used in our testbed evaluation in Section §. We
used IEEE 802.11b as the MAC/PHY layer
which was verified to produce close to theoret-
ically maximum throughput [19]. All simula-
tion results were averaged over multiple
random scenarios and each simulation mod-
eled a 1-h period of client activity.

4 We did not use the traces in Section 2 for the simulations as
we wanted to experiment with different locality parameters and
use similar workloads as existing work on caching for mobile
networks [40].

(e) Metrics: The metrics used in our evaluation
are: (1) Network load: The average total num-
ber of packets transmitted by the network
layer for a single file download. This accounts
for all control as well as data packets, and is
averaged across all the transfers initiated in
the network. (2) Throughput: Throughput of
any transfer is the ratio of the size of the trans-
fer to the time taken to complete the transfer.
(3) Average aggregate throughput (AAT):
Aggregate throughput is the ratio of the total
number of bytes downloaded by a single client
to the total time spent by that client down-
loading those bytes. AAT is the average of
the aggregate throughput of all the clients.
(4) Hit rate: A cache hit occurs in the Mesh-
Cache system when a client has a hit in its
access mesh router’s cache. We refer to this
as a Jocal hit. Local hit could be due to
another client connected to the same access
MR requesting the same object. Another pos-
sibility is that when per-hop transport is
enabled, an MR is an intermediate hop for a
transfer to a different MR and hence has
cached the content item. Now, when the inter-
mediate MR’s client requests the same object,
a cache hit occurs. We log the latter type of
cache hits and refer to them as ph-local hits.
Both local and ph-local hits result in the con-
tent being fetched directly from the access MR
without any communication with peer MRs or
the gateway. A cache hit also occurs when an
access MR obtains the content item from its
peer MRs instead of the gateway. We refer
to this as a remote hit. Once again, remote hits
could be due to locality in the access pattern of
two routers or due to per-hop transport. We
log all remote hits.

6. Performance evaluation of MeshCache
architectures

In this section, we first evaluate the feasibility of
architecture A3 by studying the performance of per-
hop transport mechanism with respect to the down-
load size, hop length and wireless environment.

6.1. Impact of per-hop transport

Per-hop transport is an elegant method to
achieve hop-by-hop caching in A3. However, it is
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essential to understand the impact of such a per-hop
mechanism on the throughput and the overhead of
the transport connection. Note that per-hop trans-
port requires establishing and growing multiple
TCP connections and may require application layer
data buffering due to the mismatch between
upstream and downstream throughput. However,
in order to conserve memory at the intermediate
hops, this study uses the default 16K in-kernel
socket buffers for each TCP connection and a con-
stant application-level buffer of 8K. We first evalu-
ate the impact of the number of hops on the per-
hop transport connection.

1. Performance with varying path length: In this
experiment, we take a chain of nodes of increasing
path length and compare the throughput and the
network load incurred in the presence of per-hop
transport versus direct end-to-end transport. The
inter-node distance in the chain is set to 200 m.
We vary the path length from a single hop to up
to nine hops. The choice of the maximum path
length of 9 is based on observations in [6] on the
path lengths in large scale WMN deployments.

Fig. 4 demonstrates that the throughput obtained
by per-hop transport is similar to that on a direct
end-to-end transport connection across all values
of the path length. Similarly, the network load on
both kinds of transport connections are identical.
Thus, using per-hop architecture does not adversely
impact the throughput or the incurred network load
of a transport connection and hence hop-by-hop
caching is a viable design choice for the A3 Mesh-
Cache architecture. Further, in the presence of
fading, which results in errors or loss of packets,
the per-hop architecture has slightly better through-
put than the direct transport connection.

The improvement from per-hop transport is
explained as follows: Consider a chain of nodes
A-B-C-D where A is the source and D is the desti-
nation. Suppose a packet is lost on the link C-D. In
case of direct TCP connection, A will be notified

a
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when the packet is dropped on the link C-D and
A will retransmit the packet. On the other hand
when per-hop transport is employed, the packet loss
on link C-D will be recovered by the TCP connec-
tion C-D. Thus, compared to the direct case, in
per-hop transport, the detection of packet loss and
the corresponding recovery is localized (between C
and D) and does not affect the remaining TCP
sub-connections. Also, the TCP window grows back
faster after a loss on C—D than on the direct connec-
tion since the ACKs travel a single hop. Further,
per-hop transport does not increase the number of
packets transmitted. For example, in the direct con-
nection, an ACK packet travels three hops from D
to A while in per-hop transport three separate ACK
packets are transmitted, one on each one hop sub-
connection.

2. Performance with varying loss rates: We now
study the behavior of the two transport connections
by varying the loss experienced by the links at each
hop. Such loss of packets could be due to fading,
congestion, interference, etc. We impose a loss rate
at the radio layer. The loss rate is varied between
5% and 30% based on the observations in [6] that
such loss rates are highly probable even on routes
selected by link-quality routing protocols. Note that
not all loss events at the radio layer translate to loss
events at the transport layer since the MAC proto-
col already makes an attempt to recover from losses
by retransmitting packets. Each link has a loss
rate randomly chosen between 0 to the value on
the X-axis in Fig. 5 which depicts the performance
of the per-hop and direct transport connections as
the loss rate is varied. The per-hop transport con-
nection outperforms the direct transport connection
across all the values of the loss rate for both the 6-
hop and the 4-hop chain. Also, the network load in
the per-hop connection is slightly lower than that of
the direct connection. This can be attributed to the
quick localized detection and recovery from loss
events in the per-hop transport connection.
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Fig. 4. Performance of per-hop transport with varying path length. (a) Throughput and (b) network load.
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Fig. 5. Performance of per-hop transport as packet loss rate is varied. (a) Throughput and (b) network load.

3. Performance with varying download size:
Finally, we study the impact of the size of the file
download on the transport connections by fixing
the path length to be four hops and the loss rate
at 10%. Fig. 6 illustrates that as the download size
increases, the per-hop connections outperform the
direct connections by an increasing margin. This is
because, as the download size increases, the dura-
tion of the connection increases, thereby increasing
the number of chances presented to perform quick
detection and recovery from loss. Similarly, the net-
work load in the per-hop connection is lower than
that of the direct connection.

In summary, we conclude that the per-hop trans-
port required to support hop-by-hop caching in
architecture A3 does not adversely affect perfor-
mance in comparison to end-to-end transport. In
fact, the throughput of per-hop transport is better
than end-to-end transport under fading channels
with lossy links. Since these conditions are typically
true in wireless networks, we expect per-hop trans-
port to generally perform better than or comparable
to end-to-end transport, thereby improving caching
without a performance penalty. Note that the above
simulations capture the delay of traversing up and
down the TCP/IP stack when simulating per-hop
transport. Hence, the performance benefit of per-
hop transport holds despite this overhead. The
performance benefit of per-hop transport is also
confirmed by the experimental measurements in
our testbed (Section 8).

a

2 200 F

<150

2100

[=2]

3 50 Direct —+— A
E 0 Hop-by-hop --->¢---

150 200 250 300 350 400
File size (KBytes)

6.2. Comparison study of MeshCache
architectures

This section presents the performance compari-
son of the three MeshCache architectures, Al, A2
and A3, using different cache selection protocols.

6.2.1. THCP performance

We compare the performance of A2 and A3
using the THCP protocol. THCP represents archi-
tecture A2 while PH-THCP represents A3. We also
include the results from Al which is referred to as
Default. For this experiment, we consider three dif-
ferent placements (Fig. 7) for the gateway node
where each scenario presents a different topological
balance. The comparison between Default, THCP
and PH-THCP is presented in Table 2.

In Scenario 1, using THCP and PH-THCP, the
gateway serves 13.4% and 31.6% lesser bytes respec-
tively compared to Default. The reduction in

°
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B Gateway

Fig. 7. Three different scenarios used for comparison of cache
selection schemes.
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Fig. 6. Performance of per-hop transport with varying transfer sizes. (a) Throughput and (b) network load.
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Table 2

Performance of the architectures under THCP scheme

Metric AAT (Kbps) Gateway load (KB) Network load (Packets/file)

Scheme Default THCP PH-THCP Default THCP PH-THCP Default THCP PH-THCP
S1 1382.8 1479.2 1715.1 60,727 52,579 41,530 144.4 124.1 114.6

S2 467.5 561.9 853.3 60,224 52,140 17,680 279.9 242.6 171.8

S3 1312.2 1509.6 1612.7 58,128 50,215 41,011 145.8 126.4 117.4

gateway load is accompanied by an increase in AAT
by 7% and 24% for THCP and PH-THCP, respec-
tively when compared to Default. Also, PH-THCP
has a gateway load reduction of 21% and increase
in AAT by 16% with respect to THCP. THCP
improves the performance when compared to
Default by exploiting the local hits (hit rate of
14.4%) at each access MR. These hits are served
directly by the access MR to the client and the client
experiences higher throughput. In fact, the reduc-
tion in the gateway load is very close to the hit rate.
PH-THCP, in addition to exploiting local hits at
access MR as in THCP, has a ph-local hit rate of
4% and a remote hit rate of 13.6% due to hop-by-
hop caching. Thus, all the hits (a total hit rate of
32%) in PH-THCP avoid the gateway resulting in
a corresponding reduction in gateway load when
compared to Default.

Similarly, the gateway load reduces by 13.4% and
70.6% in Scenario 2 and by 13.6% and 29.4% in Sce-
nario 3 for THCP and PH-THCP respectively. Note
that these reductions correspond to the total hit rate
observed in these experiments. Also, since THCP
exploits only local hits, its hit rate and hence reduc-
tion in gateway load remain similar across all
scenarios. However, the placement of gateway
affects the extent of ph-local and remote hits in
PH-THCP. For instance, the reduction for PH-
THCP in Scenario 2 is larger compared to that in
Scenarios 1 and 3. This is due to the imbalance in
the topology of Scenario 2. The imbalance causes
the gateway to be accessible from only a few nodes
and thus all the content obtained from the gateway
is concentrated in these nodes. When other nodes
request the same content, the content is more read-

ily located in these nodes and hence results in an
improved hit rate for PH-THCP.

The imbalance in Scenario 2 also causes the
routes from some nodes to the gateway to be much
longer than other nodes. Thus, when such nodes
experience a reduction in path length due to PH-
THCP as compared to THCP, there is a significant
gain in AAT (82% compared to Default and 51%
compared to THCP). In contrast, in Scenarios 1
and 3, the path lengths between nodes and the gate-
way are typically smaller. Thus most nodes already
achieve good throughput that cannot be drastically
improved from per-hop transport. A reduction in
network load is also observed in both THCP and
PH-THCP across all scenarios. A nice feature of
PH-THCP is that data replication increases propor-
tionally with the distance to the gateway, which can
increase the hit rate. Thus PH-THCP is more resil-
ient to bad gateway placement.

6.2.2. BCP performance

In this section, we investigate the performance of
the MeshCache architectures using the BCP scheme.

Here, BCP represents architecture A2 while PH-
BCP represents A3. We also include the results from
A1l which is referred to as Default. The results are
presented in Table 3. In Scenario 1, the gateway
serves 36% and 46% less bytes using BCP and PH-
BCP, respectively, compared to Default. The AAT
is increased by 20% for BCP and 23% for PH-
BCP when compared to Default. Also, PH-BCP
achieves 16% lower gateway load and 3% higher
AAT than BCP.

BCP achieves better performance than default by
exploiting the local hits (hit rate of 14.4%) at each

Table 3

Performance of the architectures under BCP scheme

Metric AAT (Kbps) Gateway load (KB) Network load (Packets/file)
Scheme Default BCP PH-BCP Default BCP PH-BCP Default BCP PH-BCP
S1 1382.8 1656.2 1705.5 60,727 38,761 32,597 144.5 110.0 107.3

S2 467.5 713.7 940.5 60,224 39,684 17,680 279.9 198.1 159.5

S3 1312.2 1546.9 1623.8 58,128 39,613 33,719 145.8 114.1 110.8
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access MR as well as the remote hits from nearby
MRs (hit rate of 23%). These hits are served by
MRs with higher throughput than the gateway,
resulting in an increase in AAT by 20%. In fact,
the reduction in the gateway load in BCP is similar
to its total hit rate (38%). PH-BCP further improves
the availability of content and hence the hit rate
(apart from the 14.4% local hit rate, ph-local hit rate
of 4% and remote hit rate of 28%) due to hop-by-
hop caching. Together, all the hits (total hit rate
of 47%) in PH-BCP avoid the gateway resulting in
a corresponding reduction in gateway load when
compared to Default.

Further, the gateway load reduces by 34% and
70% in Scenario 2 and by 32% and 42% in Scenario
3 for BCP and PH-BCP, respectively. Note that
BCP’s hit rate and hence reduction in gateway load
remain similar across all scenarios since the avail-
ability of content is independent of the position of
the gateway in A2. However, the placement of gate-
way affects the extent of ph-local and remote hits in
PH-BCP similarly as in PH-THCP. This enhanced
locality in Scenario 2 also results in 101% higher
AAT in PH-BCP compared to Default. Unlike in
THCP, when a cache miss occurs at the access
MR, BCP looks for other MRs that have requested
the same content item, resulting in remote hit rate.
This also explains why the gain of PH-BCP over
BCP is smaller than that of PH-TCP over THCP.

Similarly, we also found that PH-GHCP benefits
from per-hop transport connections and outper-
forms GHCP which in turn outperforms the Default
scenario. Therefore, we conclude that architecture
A3 outperforms architecture A2 irrespective of the
cache selection algorithm used. Further, both archi-
tectures A3 and A2 outperform Al. Next, we eval-
uate which cache selection algorithm should be
used for the best architecture A3.

6.3. Comparison of cache selection protocols
In this section, we compare all the cache selection

protocols for architecture A3. The simulation set up
is similar to the previous sections. Table 4 depicts

the performance of the three per-hop cache selection
protocols.

PH-BCP imposes lower load at the gateway than
PH-THCP and PH-GHCP. For example, in Scena-
rios 1 and 3, it incurs 21.5% and 17.8% lower load in
bytes than PH-THCP, respectively, and 17% and
10% lower load in bytes than PH-GHCP, respec-
tively. This is because while PH-BCP chooses nodes
anywhere in the network that improve its perfor-
mance, PH-THCP restricts itself to nodes only en
route to the gateway and thus suffers from load
imbalance. PH-GHCP’s higher gateway load can
be attributed to the following: Although we use a
localized hash function, a detour always occurs
when using PH-GHCP. Unlike in PH-BCP where
the detour is only taken when a hit is assured,
PH-GHCP has many detours that result in misses.
This is due to the heavy tail of the request popular-
ity distribution. Unpopular content is typically uni-
versally unpopular [38]. Thus a significant number
of requests take a detour followed by a miss, result-
ing in contacting the gateway and hence higher gate-
way load. Interestingly, in the scenario with severe
imbalance (Scenario 2), all three schemes exhibit
similar load at the gateway. In this case, since the
gateway is placed in a corner, all the files obtained
from the gateway will also be cached around the
gateway due to hop-by-hop caching. Hence, any
request that is already served by the gateway can
be obtained enroute to the gateway before reaching
the gateway itself. Hence, PH-THCP and PH-
GHCP have similar gateway load as in PH-BCP.

Further, the results show that for all scenarios
considered, PH-BCP provides the best throughput
performance. PH-BCP also has the lowest network
load across all three scenarios. Even in Scenario 2,
although the gateway load is similar, the AAT of
PH-THCP and PH-GHCP is lower than that of
PH-BCP. This is because PH-BCP spreads more
load away from the gateway when compared to
the other two schemes. In summary, PH-GHCP
achieves lower throughput than PH-THCP and
PH-BCP from taking detours. While PH-THCP
incurs no search delay or search overhead,

Table 4

Performance of per-hop cache selection protocols

Metric AAT (Kbps) Gateway load (KB) Packet transmissions per file

Scheme  PH-THCP PH-BCP PH-GHCP PH-THCP PH-BCP PH-GHCP PH-THCP PH-BCP PH-GHCP
S1 1715.1 1705.5 1545.6 41,530 32,597 39,275 114.6 107.3 127.4

S2 853.3 940.5 567.4 17,680 17,680 17,812 171.8 159.5 193.6

S3 1612.7 1623.8 1478.2 41,011 33,719 37,462 117.4 110.8 131.3
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Fig. 8. Performance comparison of A3 and Al. PH-BCP is used for cache selection.

PH-BCP can alleviate congestion better by sending
requests anywhere in the network and achieves
better throughput and lower network and gateway
load. We conclude PH-BCP is the best cache selec-
tion protocol in A3.

6.4. Summary

In summary, our extensive simulations have
demonstrated that per-hop transport is a viable
mechanism to enable hop-by-hop caching in A3.
Architecture A3 using PH-BCP outperforms A2
by increasing the client AAT by up to 100% and
reducing gateway load by up to 70%. In fact,
Fig. 8a demonstrates the CDF of per file through-
put in A3 and Al for the three scenarios. The
CDF confirms the gain in throughput observed in
A3 when compared to Al. For instance, in Scenario
2, while in Al approximately 20% of the file down-
loads achieve throughput higher than 1 Mbps, in A3
50% of file downloads achieve throughput greater
than 1 Mbps.

Note, however, that these results are dependent
on the locality in the access pattern of the clients.
As seen from the simulation parameters, the Zipf
parameter used in the above study is 0.8 and is
based on previous studies of caching in wireless net-
works [40] and measurements from web traces [7].
To study the effect of varying locality on the
MeshCache performance, we vary the Zipf parame-
ter from 0.2 to 1.> As seen in Fig. 8b and c, as the
Zipf parameter is increased, the percentage increase
in AAT in A3 vs. Al goes up and so does the per-
centage reduction in gateway load. Similar to the
observations above, the gain is highest in Scenario
2 due to its significant topological imbalance. Spe-
cifically, the work in [7] studied web request traces
from a fixed group of users and found that the Zipf

5 The larger the value of Zipf parameter, the higher the locality.

parameter varied between 0.64 and 0.83. For this
range of Zipf parameter values, MeshCache exhibits
significant improvement in throughput and reduc-
tion in gateway load.

To validate the performance and usability of
MeshCache, we implemented and deployed Mesh-
Cache on our wireless mesh network testbed [28]
and evaluated it extensively.

7. MeshCache implementation

In this section, we describe the implementation of
the MeshCache system. The MeshCache system is
implemented by a user-level daemon — MeshCache
D. The functions of MeshCacheD are: (1) Transpar-
ently hijack web requests initiated at the clients and
serve these requests from either its own cached con-
tent in case of a hit. (2) Locate the appropriate par-
ent cache to fetch the data from in case of a cache
miss. (3) When data is fetched, enable hop-by-hop
transport of the data to facilitate caching at every
hop. (4) Cache the content fetched for a client and
maintain its freshness. We leverage Squid [46], an
open-source proxy cache software developed for
Internet web caching, to implement the MeshC-
acheD. The MeshCacheD consists of three modules:
(1) The MSquid module (MSM) is responsible for
transparently hijacking client requests and serving
them from its cache or the appropriate parent cache,
caching and validating fetched data, and performing
hop-by-hop transport. Squid software is modified to
obtain the MSM. We disabled Squid’s cache selec-
tion protocols and instead interfaced it with an
implementation of our cache selection protocols.
Further, we exploited Squid’s functionality to deal
with a hierarchy of caches to perform hop-by-hop
caching. (2) The Cache Selection module (CSM)
implements the cache selection protocols as
described in Section 4 to locate a suitable parent
cache given a URI. The CSM is also responsible
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for enabling hop-by-hop caching via the MSM. To
enable both the above functions, the CSM exports
FindParentCache (givenURI) interface to the MSM
and also interacts with the underlying routing pro-
tocol via the Cross-Layer module (CLM). (3) The
CLM is responsible for communicating with the
underlying routing protocol to obtain information
and export this information via known APIs to
the other modules in MeshCacheD. Our current
prototype implements these APIs as functions calls
that operate on routing table information continu-
ously updated to the /proc virtual file system by
the routing protocol in the OS kernel. The virtual
file system provides a shared memory interface
between MeshCacheD CLM and the underlying
routing protocol in the kernel. The information
shared contains the current best next hops for
known destinations, path metric to a destination
node (e.g. accumulated ETX of all links) and the
best known gateway with path metric. The CLM
exports the following APIs on behalf of the routing
protocol to other MeshCache modules: BestGate-
way(), BestGatewayMetric(), BestNode({node IP
list)) and GetNextHopForNode({node IP)).

In the following sections, we describe how the
MeshCacheD implements architecture A2 using
THCP and A3 using PH-THCP and PH-BCP. A2
is implemented to obtain a comparison point.

7.1. THCP implementation

Each mesh router runs the MeshCacheD. Refer-
ring to Fig. 9, THCP works as follows: (1) An
unmodified client applications in the WMN gener-
ates a web request for a URI X. (2) The request
for X is routed through the access mesh router
(AMR) for this client. (3) At AMR, the client
request is transparently hijacked by the MSM using
the standard Linux Netfilter [44], and queuing it up
for MeshCache processing using /ibipg. (4) The
MSM now captures all further communication from
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this client. This enables the MSM to parse the client
request to locate the data item requested. (5) The
MSM now checks for X in its cache. If there is a
cache hit, X is served to the client from the AMR
cache. (6) In case of a cache miss, the MSM issues
a FindParentCache(X) call to the CSM. (7) Since
THCP does not exploit cached objects at other mesh
routers, the CSM simply returns the best gateway
obtained from the CLM. (8) Upon returning from
the FindParentCache() call, the MSM now contacts
the gateway to fetch X. (9) The gateway either serves
the file from its cache or retrieves it from the origin
server. The data is now returned to the AMR that
serves the data back to the requesting client. (10)
AMR also caches X in its cache and maintains its
freshness information for future requests.

7.2. PH-THCP Implementation

Referring to Fig. 9, the PH-THCP scheme works
as follows: (1) Steps 1-6 for the PH-THCP scheme
are identical to that in the THCP scheme described
above. (7) To implement PH-THCP, the CSM
extracts the origin server’s IP address (SIP) from
the URL. It then issues a GetNextHopForNode(SIP)
call to the CLM. (8) The CLM communicates with
the routing protocol to obtain the best next hop for
SIP based on the metric currently employed by the
routing protocol. If the SIP is an IP address outside
of the current WMN, all the messages to the SIP
need to be routed via the gateway (GMR). Thus,
essentially, the next hop returned to the CSM in this
case will be the best next hop for GMR. (9) When
the CSM receives the best next hop for SIP, say
MR 1, it returns it as the best parent cache to the
MSM. (10) The MSM now contacts the MSM at
MR 1 requesting X. Note that the choice of MR 1
is not made after ensuring that MR 1 has X. (11)
Thus, when the MSM at MR 1 receives the request
for X, it may have a cache hit or a miss. In the event
of hit, X is returned to AMR, which in turn serves

Hop-by-hop
MeshCache| MSI\{L CSM || CLM MSM CSM CLM MSM CSM || CLM transport path
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Fig. 9. MeshCache implementation.
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the data to the client and also caches X for future
use. (12) In case of a miss, MR 1 repeats the process
from steps 6 to 11 described above. Let us assume
that the next hop for SIP from MR 1 is MR 2. If
MR 2 has a cache hit, the data will now be served
from MR 2 to MR 1, which caches the data and fur-
ther serves it to AMR, which once again caches the
data and serves it to the client requesting X. Thus,
the CSM exploits Squid’s behavior when contacting
parent caches to perform hop-by-hop caching. (13)
In case of a miss at MR 2, the process repeats itself
until the request is received by the gateway itself.
(14) The gateway then either serves the file from
its cache or retrieves it from the origin server and
returns it to the client, and each router along the
way caches the file.

7.3. PH-BCP implementation

Referring to Fig. 9, the PH-BCP scheme works as
follows: (1) Steps 1-6 for the PH-BCP scheme are
identical to that in the THCP scheme described
above. (7) The CSM maintains a one-to-one map-
ping between a URI and the corresponding IP
address of the mesh router that has a cached copy
of the content. This mapping is maintained with a
refresh timeout. (8) When the CSM receives the
FindParentCache(X) call, it consults its mapping
table to determine if a corresponding IP address is
found. (9) When the CSM finds no such mapping,
it begins the PH-BCP cache selection protocol.
For example, when AMR receives the request for
X for the first time and experiences a cache miss,
its corresponding CSM will also fail to locate a
mapping for X. (10) To implement PH-BCP, the
CSM extracts the data item X from the URI. It then
sends a UDP content locate message to the broad-
cast IP address along with a gateway path metric
calling the BestGatewayMetric() CLM function.
(11) Any mesh router receiving the content locate
message checks its cache to see if it contains X. In
case of a hit, the mesh router unicasts a content
found message back to AMR. All mesh routers also
rebroadcast the content locate message to their
neighbors until the metric in the message exceeds
the path metric to the gateway. (12) AMR collects
all the content found messages received in a time per-
10d of timeout seconds. It then picks the mesh router
that maximizes the throughput out of all routers
with a cache hit. Let us denote this node as FIP.
Note that if AMR does not obtain any content found
messages, it picks GMR as the node containing X.

(13) It then calls GetNextHopForNode(FIP) and
obtains the next hop for FIP, say MR 1. It returns
MR 1 to the MSM. (14) The CSM also makes a
note of mapping between X and FIP in its mapping
table. It also send a sefup message to MR 1 with the
mapping information. (15) When MR 1 receives the
setup message, it finds the best next hop for FIP and
forwards the message to that mesh router. It also
makes a note of this mapping in its mapping table.
This process is repeated till it reaches a node such
that the next hop for a message reaching FIP is
FIP itself. (16) Now, the MSM of AMR contacts
the MSM of MR 1 for X. MR 1 gets a cache miss
and hence contacts its CSM. The CSM will now find
a mapping for X created by the setup message sent
by AMR. It then gets the best next hop for FIP
and returns it to the MSM. (17) This process contin-
ues till FIP is contacted and a cache hit is obtained.
FIP then transfers X which is pipelined till the cli-
ent. Effectively, all the intermediary mesh routers
cache the content thereby enabling hop-by-hop
caching. (18) When X is not found in the WMN,
the request reaches GMR and GMR contacts the
origin server.

7.4. Cache consistency

Since MeshCache uses the Squid code base, we
rely on the inbuilt mechanisms of Squid to ensure
object consistency. Objects downloaded in HTTP
use HTTP headers (e.g., in HTTP/1.1) to specify
an expiry time or other types of freshness informa-
tion which is used by MeshCache on each router
to determine when objects are stale. Since HTTP
is likely to be the most widely used object retrieval
protocol used over MeshCache, we focus on it in
this paper. If some proprietary protocol (e.g., p2p
sharing) is used fetch objects then that protocol will
need to specify expiry information for data items to
work with MeshCache, or some default timeouts
will be required.

8. MeshCache performance

In this section, we evaluate the performance of
MeshCache over a deployed wireless mesh network
testbed.
8.1. Testbed setup

Our testbed, MAP (Mesh@Purdue [28]), consists
of 15 wireless mesh routers (small form factor
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Fig. 10. Deployment of the MAP testbed used for MeshCache evaluation.

desktops) spread out over the second floor of two
adjoining academic buildings (MSEE and EE).
For the experiments in this paper, each mesh router
is equipped with a single wireless card. Nine nodes
in the MSEE building are equipped with Atheros
5212 based 802.11a/b/g cards while six nodes in
the adjoining EE building are equipped Senao Enge-
nius 2511 802.11b wireless card. We configured the
entire network to operate in 802.11b mode. Each
radio is attached to a 2dBi rubber duck omnidirec-
tional antenna with a low loss pigtail to provide
flexibility in antenna placement. Each mesh router
runs Linux kernel 2.4.20-8 and the open-source hos-
tap and madwifi drivers are used to enable the wire-
less cards. IP addresses are statically assigned. The
wireless cards we use can support a wide range of
power settings (up to 200 mW). We used them in
their default operational mode.

Fig. 10 shows the layout of nodes in our testbed.
The testbed deployment environment is not wireless
friendly, having floor-to-ceiling office walls instead
of cubicles as well as some laboratories with struc-
tures that limit the propagation of wireless signals.
Apart from structural impediments, interference
exists in our deployment from other 802.11b net-
works (the Purdue Airlink network). We used
channel 11 of 802.11b to operate our network since
it was the band furthest away from those being
already used in the deployment environment. In
summary, the environment is highly variable and
many different paths exist between nodes.

The routing protocol used in the testbed is MAP-
DV, which we implemented through modifications
to the kernel AODYV routing protocol implementa-
tion [21] to incorporate proactive gateway discovery
[11], the ETX metric [9] and ETT metric [13] and the
interface to the CLM. We used netperf measure-

ments to confirm that MAP-DV provides better
throughput than vanilla AODV.

We compare the performance of the three
MeshCache architectures using our testbed. Archi-
tecture Al is again referred to as Default. Architec-
ture A2 is represented by THCP while both PH-
THCP and PH-BCP are included for architecture
A3. We choose a deployment where MR 7 is the
gateway node with access to the Internet while 10
out of the remaining 14 nodes are chosen as traffic
sources. Each source is driven by a synthetic web
trace obtained similar to in the simulation. Also,
the cache size in each mesh router is set to 2 MB
due to the working set size and length of the exper-
iment. Each experiment consists of clients making
requests from the trace through an unmodified wget
client for a period of 1h. The experiments were
repeated once every day for one week and the
results averaged. Throughput per file transfer is
used as the metric for this study.

8.2. Performance results

We first performed measurements to quantify the
interactions between per-hop transport and the
underlying routing protocol. Specifically, we want
to measure whether fixing of routes in per-hop
transport leads to poor adaptation to network con-
ditions by not allowing route changes for the dura-
tion of a transfer. We measured if route changes
occurred in an interval of 30 s® between nodes 5, 1
and 7 using a ping with the record route option
every second over a period of 12 h. We found that
for node 5, routes remained the same for 92% of

¢ A sample download time for content.
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the intervals while 99% of the intervals resulted in
same routes in the case of node 1. This shows that
it is unlikely that fixing routes in per-hop transport
for an interval of 30 s will result in poor link adap-
tation. The time scales of route changes are longer
than the time a route is fixed in MeshCache (i.e.
the time to download a typical content item).

We now describe our throughput performance
evaluation experiment. In this experiment, the nodes
generating traffic can be separated into nodes that
are one hop away and those that are more than
one hop away from the gateway for ease of explana-
tion. Thus, MRs 2, 3, 4, 9, 10 and 15 are one hop
away from MR 7 while MRs 1, 5, 8 and 12 are more
than a hop away from the gateway.

The performance of the MRs that are one hop
away is depicted in Fig. 11. For each MR, the
throughputs obtained per file transfer are sorted
and plotted. Due to lack of space, the performance
of four such nodes is depicted. When THCP scheme
is employed, each MR benefits from the locality in
its own access pattern, i.e., when the MR receives
a request for a content item that it has fetched in
the past and hence cached, the MR can serve the
request from the cache and thus obtain a significant
improvement in its throughput. For example, for
node 15, compared to the default scheme, 20 trans-
fers benefit from caching at the access MR itself.
Note that the throughput for a cache hit is very high
(about 50 Mbps) and hence is not depicted in the
graph. Similar benefit is observed in all the nodes
when THCP is employed. For the one-hop nodes,
performance using PH-THCP is largely similar to
using THCP since when they do not have a local
hit, they have to traverse only one hop irrespective
of the cache-selection algorithm. However, the
one-hop nodes can benefit from PH-THCP when
any MR whose route to the gateway passes through
them requests for an object that they will request in
the future. In this case, when the node whose route
passes through them fetches the object from the
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gateway, the object will be cached at this node.
Node 15 shows the presence of gain from PH-THCP
as it exploits the locality in the traffic pattern of
itself and its neighbors. An additional 10 transfers
benefit from PH-THCP as compared to THCP in
node 15. Similar benefit is also observed in the other
nodes. Thus, with PH-THCP, some transfers that
take one hop to be served can now be served from
the cache on the MR itself. The performance of
PH-BCP is expected to be similar to that of PH-
THCEP for the one-hop nodes since PH-BCP cannot
further reduce the number of hops required to serve
the content to less than one. This effect is observed
in nodes 3, 4 and 10. Interestingly, node 15 shows
significant benefit when using PH-BCP across all
transfers. This is because compared to nodes 10 or
3, the connection of node 15 to gateway 7 passes
through several walls, resulting in increased attenu-
ation of the signal and hence reduced throughput.
PH-BCP enables MR 15 to choose other potential
candidates for a content item (say 4, 9 or 10) which
provide much higher throughput than the one hop
to the gateway. Note that MR 4 does not experience
any further improvement with PH-BCP as it is
unable to locate a better candidate to obtain the file
from.

The performance of the MRs that are more than
one hop away is depicted in Fig. 12. Similar to in the
1-hop case, the performance of the MRs using
THCEP is better than the default case. Once again,
the nodes exploit the locality in their own access
pattern. For example, THCP improves the perfor-
mance of 20 transfers in MR 5. Further, PH-THCP
has the potential of reducing the number of hops
required to obtain a content item up to 1, thereby
improving the throughput. Note that similarly as
in the one-hop case, these nodes will benefit when
the nodes whose routes pass through them request
for files that will be requested by these nodes in
the future. This effect is observed in all the nodes
that are two hops away. For example, MR 5

MR 15
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Fig. 11. Download performance of individual mesh routers one hop away. MR 7 is the gateway.
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improves the performance of 10 transfers using PH-
THCP. Finally, using PH-BCP further improves the
performance of these nodes. For example, nodes 12
and 8 benefit from using PH-BCP by obtaining con-
tent from MRs like 4, 15 or 9 instead of the gateway
7. Also, PH-BCP enables searching all the nodes in
the vicinity of a mesh router instead of only those
that are en route to the gateway as in PH-THCP.
Note that MRs 1 and 5 do not obtain further benefit
from PH-BCP as they have limited number of
neighbors (nodes 2 or 3 for MR 1, node 10 for
MR 5). One among the potential neighbors is
already considered by PH-THCP and hence PH-
BCP does not have different potential candidates
to obtain additional benefit.

The performance of the network using the
MeshCache system is summarized in Fig. 13a using
a CDF of the total transfers in the network. In sum-
mary, in the absence of caching in the network, only
20% of the transfers have a throughput greater than
1 Mbps. When a simple scheme like THCP is used,
40% of the transfers have a throughput greater than
1 Mbps. PH-THCP results in 50% of the transfers
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Fig. 13. Overall download performance of mesh routers. (a)

Overall throughput and (b) overall network load.

having a throughput greater than 1 Mbps. Finally,
using PH-BCP results in almost 60% of the total
transfers across all the nodes having a throughput
larger than 1 Mbps. Fig. 13b also shows that the
average load per node as well as the gateway load
is reduced by using MeshCache. PH-BCP reduces
gateway load the most out of all the schemes.

Finally, we observed that the latency of transfers
did not suffer despite the search overhead of
PH-BCP. The average and median latency were in
fact lower than without MeshCache (by around 5-
10%). This is because without cooperative caching,
packets suffer queuing delays as they get closer to
the gateway which more than even out the extra
delay incurred from cooperative caching, except in
networks with very low load.

9. Related work
9.1. Wireless mesh networks

Many design issues of WMNs have been recently
studied [20,12,31,30,4,24,6] and many companies
are offering products for deploying WMNs [27,5].
However, research in WMNSs has primarily focused
on new routing protocols, improving medium
access, as well as new designs for physical layer tech-
nology. To the best of our knowledge, no previous
work specifically explores incorporating content
caching to improve the performance of WMN:ss.

9.2. Caching in wireless networks

Content caching has been previously proposed
for improving performance in mobile ad hoc
networks [33,40,16,17]. However, MeshCache is
different from these previous approaches since it is
designed for static wireless mesh networks and aims
to provide a transparent infrastructure-based solu-
tion to exploiting locality. In addition, MeshCache
is a complete system design that incorporates
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cross-layer communication to enable transparent
caching. Previous work has primarily focused on
simulations, neglecting the practical considerations
in deploying a caching infrastructure. For example,
previous work assumes that files can be easily stored
as they pass through the routing layer whereas this
is not possible without a per-hop transport architec-
ture or major modifications to client applications
and network layers of all mesh routers.

9.3. Transport protocol enhancements

There have been numerous enhancements to
TCP and even totally new transport protocols pro-
posed for mobile wireless ad hoc networks. In this
paper, we evaluated MeshCache using the widely
used TCP protocol. However, MeshCache is an
application layer system that will work with any
enhanced transport protocol as well. The per-hop
transport technique used in MeshCache should ben-
efit any new transport protocol by providing them
with quick congestion detection and response as
well as quick error recovery. The technique of split-
ting an end-to-end TCP connection into multiple
ones (Split TCP) has been previously proposed to
improve throughput and fairness in mobile wireless
ad hoc networks [22]. However Split TCP is
designed to deal with mobility and only splits the
connections at a few intermediate nodes. Mesh-
Cache splits each hop of the transport connection
to enable caching. Split TCP connections also natu-
rally arise in overlay networks in the Internet
[23,29,34,3]. However, the overlay split TCP is fun-
damentally different from the per-hop transport in
MeshCache since in the Internet, the original end-
to-end path may be totally different from the over-
lay split transport path. In this case, the overlay
path can be better or worse than the end-to-end
path. In MeshCache, the per-hop and end-to-end
transport session both operate over the exact same
underlying network path. Thus, the per-hop trans-
port in MeshCache cannot worsen the network path
used. Packet retransmissions in MeshCache also
take place from the closest possible point in the path
unlike in overlay networks where the per-hop con-
nections span multiple Internet routers.

10. Conclusions
In this paper, we proposed the MeshCache sys-

tem for exploiting the locality in client request pat-
terns in a wireless mesh network. The MeshCache

system alleviates the congestion bottleneck that
commonly exists at the gateway node in WMNs
while providing better client throughput by enabling
content downloads from closer high-throughput
mesh routers. MeshCache is loosely coupled with
the underlying transport and routing protocols to
maximize deployability and exploit cross-layer
information awareness. Through simulation and
testbed experiments with a deployed implementa-
tion, the hop-by-hop caching mechanism coupled
with PH-BCP cache selection in MeshCache was
shown to be an effective technique to improve
WMN performance.

We are currently working on exploiting the
MeshCache content cache for current and future
applications in WMNSs. For example, a community
file sharing service could simply query this content
cache in peer routers for high throughput content
download. Further innovations such as chunk-
based parallel download and new WMN services
such as downloadable movies and music can also
leverage the content cache for improved load
balancing and throughput for clients. Finally, the
content cache can be extended for delivering large
software patches required by many users by allow-
ing such specialized content to be selectively cached
despite their large sizes. We also plan to conduct
measurement studies to further understand the
locality in live WMN traffic as we extend our test-
bed to cover student dormitories.

Acknowledgements

We thank the anonymous reviewers for their
helpful comments. This work was supported in part
by NSF grants CNS-0338856 and CNS-0626703.

References

[1] A. Adya, P. Bahl, J. Padhye, A. Wolman, L. Zhou. A multi-
radio unification protocol for IEEE 802.11 wireless net-
works, in: Proceedings of BroadNets, 2004.

[2] LF. Akyildiz, X. Wang, W. Wang, Wireless mesh networks:
a survey, Comput. Networks 47 (4) (2005) 445-487.

[3] Y. Amir, C. Danilov, Reliable communication in overlay
networks, in: Proceedings of DSN, 2003.

[4] P. Bahl, A. Adya, J. Padhye, A. Wolman, Reconsidering
wireless systems with multiple radios, ACM MC2R, October
2004.

[5] Bel Air Networks. <http://www.belairnetworks.com>.

[6] J. Bicket, D. Aguayo, S. Biswas, R. Morris, Architecture and
evaluation of an unplanned 802.11b mesh network, in:
Proceedings of ACM MobiCom, 2005.


http://www.belairnetworks.com

702 S.M. Das et al. | Ad Hoc Networks 5 (2007) 680-703

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web
caching and Zipf-like distributions: evidence and implica-
tions, in: Proceedings of IEEE INFOCOM, 1999.

[8] A. Chankhunthod, P. Danzig, C. Neerdaels, M.F. Schwartz,
K.J. Worrell, A hierarchical Internet object cache, in:
Proceedings of USENIX ATC, 1996.

[9] D.S.J.D. Couto, D. Aguayo, J.C. Bicket, R. Morris, A high-
throughput path metric for multi-hop wireless routing, in:
Proceedings of ACM MobiCom, 2003.

[10] P.B. Danzig, R.S. Hall, M.F. Schwartz, A case for caching
file objects inside internetworks, in: Proceedings of ACM
SIGCOMM, 1993.

[11] S.M. Das, H. Pucha, Y.C. Hu, Symmetrical fairness in
infrastructure access in multi-hop wireless networks, in:
Proceedings of IEEE ICDCS, 2005.

[12] R. Draves, J. Padhye, B. Zill, Routing in multi-radio, multi-
hop wireless mesh networks, in: Proceedings of ACM
MobiCom, 2004.

[13] R. Draves, J. Padhye, B. Zill, Routing in multi-radio, multi-
hop wireless mesh networks, in: Proceedings of ACM
MobiCom, September 2004.

[14] J. Eriksson, S. Agarwal, V. Bahl, J. Padhye, A feasibility
study of mesh networks for an all-wireless office, in:
Proceedings of ACM MobiSys. Also MSR Technical Report
MSR-TR-2005-170, June 2006.

[15] L. Fan, P. Cao, J. Almeida, A. Broder, Summary cache: a
scalable wide-area Web cache sharing protocol, in: Proceed-
ings of ACM SIGCOMM, 1998.

[16] V.I. Francoise Sailhan, Energy-aware web caching for
mobile terminals, in: Proceedings of ICDCS Workshops,
2002.

[17] T. Hara, Effective replica allocation in ad hoc networks for
improving data accessibility, in: Proceedings of INFOCOM
2001, 2001.

[18] S. Iyer, A. Rowstron, P. Druschel, Squirrel: a decentralized
peer-to-peer web cache, in: Proceedings of ACM PODC,
July 2002.

[19]J. Jun, P. Peddabachagari, M. Sichitiu, Theoretical maxi-
mum throughput of IEEE 802.11 and its applications, in:
Proceedings of NCA, 2003.

[20] R. Karrer, A. Sabharwal, E. Knightly, Enabling large-scale
wireless broadband: the case for taps, in: Proceedings of
ACM HotNets, 2003.

[21] Kernel AODV. <http://w3.antd.nist.gov/wctg/aodv_kernel/
index.html>.

[22] S. Kopparty, S. Krishnamurthy, M. Faloutsos, S. Tripathi,
Split-tcp for mobile ad hoc networks, in: Proceedings of
GLOBECOM, 2002.

[23] G.-1. Kwon, J.W. Byers, ROMA: reliable overlay multicast
with loosely coupled TCP connections, in: Proceedings of
IEEE INFOCOM, 2004.

[24] P. Kyasanur, N.H. Vaidya, Routing and interface assign-
ment in multi-channel multi-interface wireless networks,
Technical Report UTUC, October 2004.

[25] J. Li, C. Blake, D.S.D. Couto, H.I. Lee, R. Morris, Capacity
of ad hoc wireless networks, in: Proceedings of ACM
MobiCom, March 2001.

[26] B.A. Mah, An empirical model of http network traffic, in:
Proceedings of IEEE INFOCOM, 1997.

[27] Mesh Networks. <http://www.meshnetworks.com>.

(28] Mesh@Purdue. <http://www.engineering.purdue.edu/MESH>.

[29] A. Nakao, L. Wang, L. Peterson, MSB: Media Streaming
Booster, Technical Report, Princeton University CS TR-666-
02, December 2002.

[30] A. Raniwala, T. Chiueh, Architectures and algorithms for an
IEEE 802.11-based multi-channel wireless mesh network, in:
Proceedings of IEEE INFOCOM, March 2005.

[31] A. Raniwala, K. Gopalan, T. Chiueh, Centralized channel
assignment and routing algorithms for multi-channel wire-
less mesh networks, ACM MC2R 8 (2) (2004).

[32] A. Rousskov, D. Wessels, Cache digests, in: Proceedings of
WCW, 1998.

[33] F. Sailhan, V. Issarny, Cooperative caching in ad hoc
networks, in: Proceedings of MDM, 2003.

[34] M. Swany, Improving throughput for grid applications with
network logistics, in: Proceedings of SC, 2004.

[35] V. Valloppillil, K.W. Ross, Cache array routing protocol
v1.0, Internet draft, 1998.

[36] D. Wessels, K. Claffy, ICP and the squid web cache, IEEE
JSAC 16 (3) (1998).

[37] J.E. Wieselthier, G.D. Nguyen, A. Ephremides, Energy-
efficient broadcast and multicast trees in wireless networks,
Mob. Netw. Appl 7 (6) (2002).

[38] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A.
Karlin, H. Levy, On the scale and performance of cooper-
ative Web proxy caching, in: Proceeding of ACM SOSP,
1999.

[39] L. Yang, W.K. Seah, Q. Yin, Improving fairness among
TCP flows crossing wireless ad hoc and wired networks, in:
Proceedings of ACM MobiHoc, 2003.

[40] L. Yin, G. Cao, Supporting cooperative caching in ad hoc
networks, in: Proceedings of INFOCOM 2004, 2004.

[41] X. Zeng, R. Bagrodia, M. Gerla, Glomosim: a library for
parallel simulation of large-scale wireless networks, in:
Proceedings of PADS Workshop, May 1998.

[42] Champaign-Urbana community wireless network. <http://
www.cuwireless.net>.

43] MIT Roofnet. <http://www.pdos.lcs.mit.edu/roofnet>.

44] Netfilter. <http://www.netfilter.org>.

45] Southampton wireless network. <http://www.sown.org.uk>.

46] Squid Web Cache. <http://www.squid-cache.org>.

47] Wireless leiden. <http://www.wirelessleiden.nl>.

48] Seattle wireless. <http://www.seattlewireless.net>.

49] Bay area wireless users group. <http://www.bawug.org>.

[
[
[
[
[
[
[

7
8
9

Saumitra M. Das is currently a Ph.D.
candidate in the School of Electrical
and Computer Engineering at Purdue
University, USA. Previously, he
received a MS degree from Carnegie
Mellon University, USA and a B.Engg.
degree from the University of Bombay,
India. His research interests include
cross-layer system design for multi-hop
wireless networks, scalable routing
strategies in wireless ad hoc networks,
and mobile robotics.


http://w3.antd.nist.gov/wctg/aodv_kernel/index.html
http://w3.antd.nist.gov/wctg/aodv_kernel/index.html
http://www.meshnetworks.com
http://www.engineering.purdue.edu/MESH
http://www.cuwireless.net
http://www.cuwireless.net
http://www.pdos.lcs.mit.edu/roofnet
http://www.netfilter.org
http://www.sown.org.uk
http://www.squid-cache.org
http://www.wirelessleiden.nl
http://www.seattlewireless.net
http://www.bawug.org

S.M. Das et al. | Ad Hoc Networks 5 (2007) 680-703 703

Himabindu Pucha is currently a Ph.D. He received the NSF CAREER Award in 2003. He served as a
candidate in the School of Electrical and TPC vice chair for the 2007 IEEE ICDCS and 2004 IEEE
Computer Engineering at Purdue Uni- International Conference on Parallel Processing, and was a co-
versity, USA. Previously she received a founder and TPC co-chair for the International Workshop on
MSEE degree from Purdue University, Mobile Peer-to-Peer Computing. He is a member of USENIX,
USA and a B.Engg. degree from the ACM, and IEEE.

University of Bombay, India. Her
research interests include Internet rout-
ing and overlay networks, peer-to-peer
systems and applications, and mobile
computing.

Y. Charlie Hu is an Assistant Professor
of Electrical and Computer Engineering
and Computer Science at Purdue Uni-
versity. He received his M.S. and M.Phil.
degrees from Yale University in 1992
and his Ph.D. degree in Computer Sci-
ence from Harvard University in 1997.
From 1997 to 2001, he was a research
scientist at Rice University. His research
interests include operating systems, dis-
tributed systems, networking, and par-
allel computing. He has published over 80 papers in these areas.




	Mitigating the gateway bottleneck via transparent cooperative caching in wireless mesh networks
	Introduction
	Motivation
	MeshCache architecture
	Architectural design choices

	Cache selection protocols
	Cooperative caching in the Internet
	Cache selection protocols for architecture A2
	Cache selection protocols for architecture A3

	Methodology
	Performance evaluation of MeshCache architectures
	Impact of per-hop transport
	Comparison study of MeshCachearchitectures
	THCP performance
	BCP performance

	Comparison of cache selection protocols
	Summary

	MeshCache implementation
	THCP implementation
	PH-THCP Implementation
	PH-BCP implementation
	Cache consistency

	MeshCache performance
	Testbed setup
	Performance results

	Related work
	Wireless mesh networks
	Caching in wireless networks
	Transport protocol enhancements

	Conclusions
	Acknowledgements
	References


