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Grassmannian Beamforming for Multiple-Input are a generalization of the vector channel beamforming/combining
Multiple-Output Wireless Systems methods found in single-input—multiple-output (SIMO) combiners

and multiple-input—single-output (MISO) beamformers which provide

David J. Love Student Member, IEEE significantly more diversity. Compared with traditional space-time

Robert W. Heath, JrMember, IEEEand Thomas Strohmer codes [3]-[5], beamforming and combining systems provide the same
diversity order as well as significantly more array gain [21] at the
) ) ) . ) expense of requiring channel state information at the transmitter
Abstract—Transmit beamforming and receive combining are simple i, yhe form of the transmit beamforming vector (see, for example,
methods for exploiting the significant diversity that is available in f Vi h he f
multiple-input multiple-output (MIMO) wireless systems. Unfortunately, [13]-{20]). Un ortunate_ y, In systgms w gre the forward and_r?VEfse
optimal performance requires either complete channel knowledge or channels are not reciprocal, this requires coarsely quantizing the

knowledge of the optimal beamforming vector; both are hard to realize. channel or beamforming vector to accommodate the limited bandwidth
In this correspondence, a quantized maximum signal-to-noise ratio (SNR) of the feedback channel.

beamforming technique is proposed where the receiver only sends the - . .
label of the best beamforming vector in a predetermined codebook to In this correspondence, we consider the problem of quantized

the transmitter. By using the distribution of the optimal beamforming beamforming for independent and identically distributed (i.i.d.)
vector in independent and identically distributed Rayleigh fading matrix ~MIMO Rayleigh flat-fading channels when the transmitter has access
channels, the codebook design problem is solved and related to theto g low-bandwidth feedback channel from the receiver and the
_proble_m of Grassmannian line _packing. The proposed design criterion receiver employs maximum ratio combining (MRC). To support the
is flexible enough to allow for side constraints on the codebook vectors. limitati fthe f k ch | h f K
Bounds on the codebook size are derived to guarantee full diversity order. 'm'tat'o.ns of the eedb_ac channel, we assume the use of a (_:Odeboo
Results on the density of Grassmannian line packings are derived and Of possible beamforming vectors known to both the transmitter and
used to develop bounds on the codebook size given a capacity or SNR lossreceiver. The codebook is restricted to have fixed cardinality
Monte Carlo simulations are presented that compare the probability of 5nd is designed off-line. The receiver is assumed to convey the best
error for different quantization strategies. -
beamforming vector from the codebook over an error-free, zero-delay
Index Terms—Diversity methods, Grassmannian line packing, limited feedback channel. A primary contribution of this correspondence is to
feedback, multiple-input multiple-output (MIMO) systems, Rayleigh chan- yrovide a constructive method for designing a quantized beamforming
nels. codebook. We show, using the distribution of the optimal unquantized
beamforming vector, that the codebook design problem is equivalent
to the problem of packing one-dimensional subspaces known as
Grassmannian line packidg.These codebooks are a function of
I. INTRODUCTION the number of transmit antennas and the size of the codebook but

Multiple-input multiple-output (MIMO) wireless systems make usé'e independent of the number of receive antennas. We show that

of the spatial dimension of the channel to provide considerable capadrpufficient condition for providing full diversity order is that the

[1], [2], increased resilience to fading [3]-[5], or combinations of thgodebook cardinality is greater than or equal to the number of transmit
two [6]-[8]. While the spectral efficiency improvement offered byamtennas. We consider codebooks with additional constraints imposed
MIMO communication is substantial, the reductions in fading obtaindf! the beamforming vectors such as constant modulus entries or
g?enerallzed subset selection.

by trading capacity for spatial diversity should not be overlooked [9, ; o . .
[10]. In narrow-band Rayleigh-fading matrix channels, MIMO systems The connection between Grassmannian line packing and quantized
amforming allows us to leverage results from the subspace packing

can provide a diversity in proportion to the product of the number 5’? : g e
transmit and receive antennas. Diversity in a MIMO system can B@rature to find constructive methods for deriving codebooks and also

obtained through the use of space—time codes (see e.g., [3]-[5]) Or[%gvides insight into codebook quality. In order to understand_ how the

intelligent use of channel state information at the transmitter (see, e."i}iﬂoum of feedback relates to system performance, we derive a new
[11]-[17]). Transmit beamforming with receive combining is one of th&/0S€d-form expression for the density of line packings based on a re-
simplest approaches to achieving full diversity and has been of interggl[t from [22]. The density expression verifies the asymptotic subspace

recently [12]-[20]. Beamforming and combining in MIMO system?aCking density presented in [23] and allows us to derive the Hamming
bound and the Gilbert-Varshamov bound on codebook size. We use

these results to obtain approximate bounds for choosing the codebook
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Fig. 1. Block diagram of a MIMO system.

not make the connection to line packing. Different codebooks were defor this system is given By

signed in [17], [20], extending the work in [25], but are still suboptimal " "

since they are required to use codebooks containing a set of orthogonal x=z Hws+ 2z n. (1)
vectors to satisfy the supposition for the proof of diversity order. Varia- ) o

tions of QMRT and quantized EGT (QEGT) are part of the wide-banthe Vectoraw andz are called the beamforming and combining vec-
code division multiple access (WCDMA) closed-loop diversity modg)rs,'respectlyely. The noise vectorhas i.i.d. entries d!strlpl_Jted ac-
[26]. The proposed solutions are specialized for two transmit anten/§ding toCA (0, No). We mOd?l the channdl as having i.i.d. en-
and essentially quantize the channel from one of the antennas. Trandfi§if distributed according t6A(0. 1). The channel is assumed to
antenna selection for MIMO systems is a special case of quantiZ¥g known perfectly at the receiver. The symbol energy is given by

beamforming and has been proposed in [27], [28] for the MISO caé%“"”m = & ) o o
and [11], [12] for the MIMO case. In a beamforming and combining system, the key question is how to

The relationship between quantized beamforming and GrassmgdfSignw andz to maximize performance. It has been shown [15], [16],
nian line packing was observed in [22], [29]-[31] in parallel and inl28] thatw andz should be chosen to maximize the SNR in order to
dependently of our work in [32][35]. Their analysis, however, is eXninimize the average probability of error and maximize the capacity.

plicitly for the MISO scenario and does not encompass MIMO bearh©" the proposed system, the SNR after combining at the receiver,
forming and combining systems. Additionally, [22], [29]-[31] do notS

specifically address the design of hardware-constrained beamformers. &) Huwl?

Imposing additional constraints on the beamforming vector codebook, Tr = W

such as equal gain coefficients or selection columns, makes limited

feedback precoding more practical than with arbitrary codebooks (e.g., EA) IEi " el

see the closed-loop mode in the WCDMA standard [26]). In addition, = N - @

we propose new results in Grassmannian line packing that are of use

in judging the optimality of the designed quantized beamformers. OWptice that in (2)]|z||» factors out, therefore, we fiz||» = 1 without

analysis considers the amount of feedback required given acceptdd$s of generality. As well, the transmitter transmits with total energy

losses in capacity or SNR. Ei|lw||3, therefore, we assume thap||. = 1 and thais; is held con-
This correspondence is organized as follows. Section Il reviewant for power constraint reasons. Using these assumptions

beamforming and combining in MIMO systems and states the quan- - o 1sH Hul? T

tized beamforming problem. Grassmannian line packing is reviewed = = Eil2 - w| =T

in Section Ill, and some results on the minimum distance and density No No No

are derived. Section IV examines the distribution of the Optim@\'/hereI‘,. = |22 Hw|? is the effective channel gain.

beamforming vector, proposes a distortion criterion, and then relate§n a MIMO system, unlike in a MISO system, both a transmit beam-
the problem of quantizing this vector to the problem of Grassmannifg}ming vector and a receive combining vector need to be chosen. A
line packing. Different performance criteria are studied in Section yeceiver where: maximizes|=* Hw| givenw is called an MRC re-

to provide some |nS|gh_t on s_electlng the CO(_jebook size. Section (\,/éiver. The form of this vector follows from the vector norm inequality
presents Monte Carlo simulation results that illustrate performance as

a function of the amount of feedback available. The correspondence |7 Hw|? < ||2||2|| Hw||3. (4)
concludes in Section VII with some suggestions for future work. - B -

@)

We already definetjz||3 = 1, thus, the MRC vector must set
Il. SYSTEM OVERVIEW |z Hw|*> = || Hw||>. (5)

AMIMO system with transmit beamforming and receive combining, 2we usew,; to refer to theith entry of the vector, H,, ;; to refer to the
using M; transmit antennas an,- receive antennas, is illustrated in(k, ) entry of a matrixH, ” to denote matrix transpositidf,to denote matrix

Fig. 1. Suppose that the bandwidth is much smaller than the cohereffeugate transpositiop, | to denote absolute valug; | to denote the matrix

: . : . -norm,|| - |1 to denote the matrix one-norm= /—1, C™ to denote the
time of the channel thus the discrete-time equivalent channel Can:ggjimensional complex vector spade,, to refer to the set of unit vectors in

modeled as and, x M matrixH. Then the discrete-time input/outputc 74V is the set ofn x N complex matrices with unit vector columns, and
relationship at baseband, given a real or complex transmitted symbal, [-] to denote expectation with respect to a random varigble
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This is easily seen to be the unit vector= Hw/|| Hw||:. We assume Ill. GRASSMANNIAN LINE PACKING
thafrthtz%ézﬁggf%mwiﬁitgizrjién be desianed to maximize the Grassmannian line packing is the problem of optimally packing
. gve z !9 . ~~one-dimensional subspaces [36]. It is similar to the problem of

SNR under different side constraints depending on implementation SBherical code design with one important difference: spherical codes

sues. Since we assume optimal combining at the receiver, we are pri- _ . . . oo .
marily concerned with selecting. The four interestin cases'are maxg epointson the unit sphere while Grassmannian line packings are

y ng. 9 lines passing through the origin in a vector space. Grassmannian line

Imum ratio transmission, equal gain transmission, selection dIVEI’SBXCking forms the basis for our quantized beamforming codebook

transmission (SDT), and generalized subset selection (GSS). Atra&géign_ In this section, we present a summary of key results on

mitter wherew maximizes|z” Hw| givenz i lled maximum rati - . .
ue vherew ma e . | givenz is ca e_d aximu 1ato Grassmannian line packing and some new results. The terminology
transmission (MRT). A transmitter whete, satisfies|w,| =

g - L VM, follows from the work of researchers in Grassmannian subspace
Iﬁrtlthis dk ﬁéﬂ A'n[* ;f’ V(\:/alletd gque:: ggaln t;ansrTssml)n (E’Gv-\[ti rNOtepacking (see, for example, Sloane’s webpage [37]).

atthis de 0,1.a ow3w 10 be expresse as._ V¢ ere Consider the space of unit-norm transmit beamforming ve€grs

0 =[6162---6:,]" andé,. € [0, 2). SDT requires tha be one of | ot 5e define an equivalence relation between two unit veetors

the columns of »s, , the M, x M, identity matrix. A transmitter where Q. andws € ., byw; = w, iffor somef € [0, 27), w; = e'?wo.

w is the sum of columns ofys, andw = w/[[w||- is called general- s equivalence relation says that two vectors are equivalent if they
ized subset selection (GSS). This corresponds to vectors of the forg.o on the same line i6™. The quotient space with respect to this
B equivalence relation is the set of all one-dimensional subspa€#&s in
w = 1 Z(I” i [38]. The complexGrassmann manifol@ (i, 1) is the set of all one-
VE = L dimensional subspaces of the spacé. We define a distance function
on G(m, 1) by letting the distance between the two lines generated
where(Iy, )n, is thenith column ofI's, andny # n; for knTeql.  from unit vectorae; andw. be the sine of the angha  » between the
GSSiis clearly a generalization of SDT when more than one radio ch&ivo lines. This distance is expressed as [23]
is available. This method corresponds to transmitting on subsets of an-
tennas depending on channel conditions. d(wy, wy) =sin(f1,2) = /1 - lwH |
Given no design constraints on the form of the unit vectoos z and
a fixed Ny, the optimal solutions in an average probability of symbol The Grassmannian line packing probleisithe problem of finding
error sense are the beamforming and combining vectors, respectivéilg, Set, or packing, oV lines in C™ that has maximum minimum
that maximizeS,.. For a combining scheme that solves for the beanglistance between any pair of lines. Because of the relatidn,to

forming vectomw using the feasible seWW (W C ;4,) withan MRC  the problem simplifies down to arranging unit vectors so that the
receiverw is given by magnitude correlation between any two vectors is as small as possible.

We represent a packing of lines inG(m, 1) by anm x N matrix
w = arg max || Hz| 6) W= [wiw: - - - wn], Wwherew; is the vector in(2,, whose column
zEW space is théth line in the packing. The packing problem is only of in-
Jferest in nontrivial cases whefé > m.
The minimum distance of a packing is the sine of the smallest angle
between any pair of lines. This is written as

wherearg max returns a global maximizer. Note that this optimizatio
returns onlyoneout of possiblymanyglobal maximizers meaning that
the global maximizer over mo3¥’ is not unique. Notice that ifV =
Qu, , the case for an MRT system, theeris the dominant right singular
vector ofH, the right singular vector adif corresponding to the largest
singular value off [14], [15]. ) ] ] ]
In this correspondence, we consider a communication link whefd1€reé fmin is the smallest angle between any pair of lines in the
channel state information is not available to the transmitter, but th¥8cking. The problem of finding algorithms to design packings for
exists a low-rate, error-free, zero-delay feedback link for the purpose@pitraryn and N' has been studied by many researchers in applied
conveyingw to the transmitter. Since can be any unit vector in pos- Mathematics and information theory (see [36], [39], [40], etc.). The
sibly a continuum of feasible vectof€,,, for MRT), it is essential to Rankin bound (see, for example, [23], [36], [39]) gives an upper bound
introduce some method of quantization due to the limited reverse-lifR the minimum distance for line packings as a functionrofand
feedback channel. A reasonable solution is to let the receiver and trafis= ™ and is given by [23], [36]
mitter both use a codebook 6f beamforming vectors [24], [25]. The
receiver then quantizes the beamforming vector by selecting the best
(according to (6)) beamforming vector from the codebook and con-
veys the index of this vector back to the transmitter. The main benefit

of using a finite codebook is that the number of feedback bits can beAnother useful property of a packing besides the minimum distance

kept to a manageable number given faye, N']. Unfortunately, it is Isthe density. To define the density of a line packing, consider a metric

not obvious whichV vectors should be included in the codebook. ballinG(m, 1). Let’P, denote the line generated by a vedag {2,

To compare the performance of different quantized and unquantiz‘é’g" the column-space of the vectgr The ball of radiusy in G (m, 1)

beamformers, we use the average probability of symbol error defineqaartgund the line generated hy, is defined as

P. = En[P.], where the expected value of the probability of symbol Buw, (1) = {Py € G(m, 1): d(v, w;) < v} )
error P, is taken over the chann#l. Two measures that are relevant A i ‘

when comparing average probability of symbol error are array gain andte

diversity order. A system is said to haweray gain A anddiversity

order D if for SNR > 0 the average probability of symbol error is Buw, (v) N Bw, (7) = ¢ (10)
inversely proportional tod(&; /Ny ) [6].

_ ; —apHap 1?2 = .
S(W) = 1<£;1<1}<‘N7 1—|wiw| s11(Bmin ) @)

8)

for k # 1 when~y < 6(W)/2 where¢ is the empty set. Metric balls
3A feasible set is the set that a cost function is maximized over. in G(m, 1) can be geometrically visualized as spherical cap&gn
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Thus, the balB., () is the set of lines generated by all vectors on the Theorem 3: Let N (m, 6) be the maximum cardinality of a line
unit sphere that are within a chordal distanceydfom any point in  packing inG(m, 1) with minimum distancé. Then
2y N P, —2(m—1 ; . —2(m—1

The normalized Haar measure fx), introduces a normalized in- 67 <N (m, 6) < (8/2) ( g (15)
variant measurg on G(m, 1). This measure allows the computation Proof: The Gilbert—-Varshamov bound applied to line packing
of volumes of sets withigj(m, 1) [38], and thus can be used to de-says that a packing of sizZ€ = M + 1 exists whenM n(B(6)) < 1
termine the percentage 6f(m, 1) covered by the metric balls of a [23]. Using the fact thap(B(6)) = 6™~V the Hamming bound,
line packing, called the density of a line packing. The density of a lirend solving forN gives (15). g

king is defi
packing is defined as Finding the global maximizer of the minimum distance for arbitrary

B N m and N is not easy either analytically or numerically [36]. For this
AW) =u U B, (6(W)/2) reason, itis often most practical to resort to random computer searches;
=t for example, see the extensive tabulations on [37] that have been com-

_ z\: 1t (Bu, (5(W)/2)) puted for the real case. In some cases, closed-form solutions are avail-
pt ‘ able, e.g., wheV = 2m = p*+1, wherep is prime andv is a positive
= Nu(B(6(W)/2)) |ggager, conference matrices allow explicit constructions of packings
where B(6(W)/2) is an arbitrarily centered metric ball of radius[ ]
5(W)/2..
Closed-form expressions for the density of Grassmannian subspace IV. CODEBOOK ANALYSIS AND DESIGN

packings are often difficult to obtain [23]. In the case of line packings, |n [14], [15] itis shown that an optimal beamforming vector for MRT
though, we have found a way to calculate the density exactly. The regtygtems is the dominant right singular vectodbfwith H defined as

is proved in Theorem 1. in Section Il. Thereforewyrr that satisfies (6)W = Qay,) is an
Theorem 1: For any line packing i (m. 1) gglt\i/rgsl MRT solution. A restatement of this is that the optimal vector
A(W) = N (§(W)/2)*m=1) (11)
Proof: Let B =" H Hel (16)
Cw, (7) = {v € Ut d(v, w;) < v} Recall thatarg max in this case (as mentioned in Section Il) returns

only one out of possibly many global maximizers. Therefore, it is im-
portant to note that ikt satisfies (16), ther’ “wyrt also satisfies
(12) (16) since

Using our previous observation

A(Cw, (7))
A(Qm)

whereA(-) is a function that computes area. It was shown in{2Bhat
A(Cuu (ﬁ/)) — A)/Q(Vn—l).

t (Bw, (7)) =
|w€{4RTHH Hwygrr | = |67]¢MGRTHH He'°waprr |

Thus, the optimal beamforming vector obtained from (16) is not

19 (13) unique.
L) This property can be restated in terms of points on a complex line.
The result then follows. U Because of the properties of the absolute value functiom, & @

Theorem 1 provides insight into the rate at which the density groﬂésmg the equivalence relation defined in Section Ill) theandw are
el%oth global maximizers and thus provide the same performance. The

as a function of the minimum distance. This result specifically verifi . ; . ; . . L
the asymptotic results in [23] for the one-dimensional subspace ca qthors in [24] recognized this point and used this result in designing

The bound in Theorem 1 yields a new upper bound on the mi 1e vector quantization algorithm for codebook design.

imum distance of Grassmannian line packings. The Hamming bou et H be defined as in Section Il with all entries independent. The

A . . _ H . . . . .
on the maximum minimum distance achievable by a Grassmannian Iﬁ{gtnbunon ofX = H™H is the complex Wishart distribution [41].

packing of a fixed sizéY is the maximum radius of the metric balls be /AN important property of complex Wishart distributed random matrices

fore any two metric balls overlap. that we need is summarized in Lemma 1.
Lemma 1 (James [41], Edelman [42])if X is complex Wishart
T distributed, therX is equivalent in distribution t&=U"" wherel is
1/(2(m—1) . . y M . .
(W) < 2 <i) . (14) Haar distributed on the group 8f; x M; unitary matrices an& has

Theorem 2: For any N line packing inG(m, 1)

N distribution commonly found in [42].

Proof: This follows by using the Hamming bound on codesize Thus a matrix ofi.i.d. complex normal distributed entries is invariant
[23], in distribution to multiplication by unitary matrices. From this, it is
easily proven that the complex Wishart distribution is invariant to trans-
formation of the formV* (.)V whereV € /s, wherel{ss, is the
group of M; x M, unitary matrices. This is a trivial property in the

Bounds on the existence of line packings of arbitrary radius alsase of the single transmit antenna distribution because of the commu-
follow from Theorem 1 using the Gilbert—Varshamov bound on codéativity of complex numbers, but this property has highly nontrivial im-
book size. The Gilbert—Varshamov bound is obtained by finding thications fordf, > 1. A very important property of Haar distributed
maximum number of metric balls of a desired minimum distance thetatrices that will be exploited later is given in the following lemma.
can be packed without coveriggm., 1).

Nu(B(6(W)/2)) < 1.

Lemma 2 (Marzetta and Hochwald [43]) Let U be a Haar dis-

4Note that [22] evaluated the area ratio to derive the MISO outage probabiltijouted A, x M, unitary random matrix. I € Qay, thenUw is
of quantized beamformers. uniformly distributed orf2,/, .
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One solution to (16) has a distribution equivalenftd wyrr =  tation of W as a line packing and that is uniformly distributed on
[100 - 0]" orratherwnigr = U[1 00 -+ 0]7 with U/ given Qu,, it follows that
in Lemma 2. Sincd/ is Haar distributed otxs, and[1 0 0 --- 0]
is a unit vector, Lemma 2 states thatirr = U[1 0 0 --- 0] is Pr (1 —
distributed uniformly orf2,;, . It similarly follows that the columns of
U and any unit norm linear combination of columndbére uniformly  Thus, by (19) and Theorem 1
distributed orf2y, . 52(W)

This result, taken along with Lemma 1, reveals a fundamental resul@(W) < Epn [A1] <T AW)+(1- A(W))) (20)
about quantized beamforming systems that, until this point to the best ; St oo
of the authors’ knowledge, has never been shown. The distribution — mapn] (14w S(WH\ o5(W) _q 21)
of the optimal beamforming vector is independent of the number of Al 2 4 )
receive antennas. Thusge problem of finding quantized beamformers ) . )
for MISO systems is the same problem as that of finding quantizEg€ Pound in (20) was obtained by observing that there are two cases
beamformers for MIMO systemdherefore, the MISO quantized ©f the channel corresponding to if the line generatea bis or is not
beamforming analysis contained in [24], [25] is directly applicable 8 member of a metric ball of one of the codebook lines. The line gener-

62 (W)
4

ull Qu(E)|[ <

) = A(W). (19)

MIMO systems ated byu, is in a metric ball with probabilityA(W'). When the line is
: P : 52(wW
A corollary to Lemma 2 follows from observing that the optimainside of a metric ball we know that— ui’ Q. (H)[> < =2, but
beamformer is actually defined by a line. when the line is not in a metric ball we can only state the trivial bound

' _ _ thatl — |u]’ Q.,(H)|? < 1. These two cases and Theorem 1 then give
Corollary 1: The line generated by the optimal beamforming veq21). In conclusion, minimizing (21) corresponds to maximizing the
tors for a MIMO Rayleigh-fading channel is an isotropically orienteghinimum distance between any pair of lines spanned by the codebook

line in C*** passing through the origin. Therefore, the problem of quagectors. Thus, we propose the following criterion for designing quan-
tized transmit beamforming in a MIMO communication system rejzed beamforming codebooks.

duces to quantizing an isotropically oriented lineGify’* .
Grassmannian Beamforming CriteriorDesign the set of codebook

To find an optimal codebook we need to define an encoding fungactors{w, }Y, such that the corresponding codebook md#max-
tion and a distortion measure. The optimal transmit beamformer apgizes

receiver combiner maximize the receive SNR by maximizing the equiv-
alent channel gaili'- in (3). Therefore, we use an encoding function S(W)= min 4/1— Jw ! w,|2.
at the receive,,: CM*Mt — fw, wo, ..., wy) that selects the 1<k <I<N
element of the codebook that maximizes the equivalent channel gain.
Thus, This criterion captures the essential point about quantized beam-
forming codebook design for Rayleigh-fading MIMO wireless sys-
Ou(H) = arg max || Huw,|?. (17) tems:Grassmannian line packingge the key to codebook construc-
1IN tion. Thus, beamforming codebooks can be designed without regard to

. . . L . the number of receive antennas by thinking of the codebook as an op-
Notice that this encoding function is not solely a function of the max; .-, packing of lines instead of a set of points on the complex unit

imum singular value direction in the matrix channel case. The explar%-here_
tion is that situations arise where it is better to use the quantized vectop e benefitof making the connection between codebook construction
that is close to some unit norm linear combination of iesingular 504 Grassmannian line packingis thatit provides an approach forfinding
vectors. For examplg, certa_un channels where all of the singular Va|l¢%%d codebooks, namely, leveraging work that has already been done
are equal would fall into this case. ~ onfinding optimal line packings. In the real case, this problem has been

To measure the average distortion introduced by quantization, W@roughly studied and the best known packings are cataloged at [37].
use the distortion function Forthe complex case, the single-antennanoncoherent codes in[44] often
have large minimum distances (see the discussionin[22]). Othertimesiit
ispossibletofind codebooks using analytical [39] or numerical [36], [40]
methods. Some example codebooks are given in Appendix A in Tables
I-V. Notice that whenV < M, maximally spaced packings are trivial:
simply takeN columns of anyM; x M, unitary matrix. It follows that
selection diversity represents a special form of quantized beamformer
ul Qu(H) H designed using th@rassmannian beamforming criterion.

Another advantage of the connection to Grassmannian line packing is

GW) = En [\ — || HQu(H)|)3]
where ), is the maximum eigenvalue ol H and the effective

channel gain for an optimal MRT beamformer. An upper bound is

M,y

A — Z/\i
i=1

G(W) = En

- 2 that the bounds in Theorems 2 and 3 and the Rankin bound can be used
<FEn {/\1 = A juy Qu (H)r ] to judge the quality of any given codebook. For example, for a given
) andN > M,, the Rankin bound gives a firm upper bound&V).
=FEn [\ En {1 - u{’ Qw(H)‘ } (18) Unfortunately, in most cases, the Rankin bound is not attainable and in
effect quite loose [39]. The Hamming bound given in Theorem 2 can be
whered; > A» > --- > M\, > 0 anduy, uo, ..., uyr, are the usefulforlargeV butis looserthan the Rankin bound for sniéllThese

eigenvalues and corresponding eigenvectonHHfH. The inequality bounds will bg offuither usein Se(.:t.ioanordetermining rules ofthumb
in (18) follows from the independence of the eigenvalues and eigétf! the selection ol to meet specific performance requirements.

vectors of complex Wishart matrices [38], [41]. A QMRT codebook designed according to tReassmannian beam-
The intuition behind the bound in (18) is that the first factor is afPrming criterionuses a codebook matri¥” given by
indication of channel quality on average while the second factor is an W = arg max §(X). (22)

indication of the beamforming codebook quality. Using the interpre- Xeupl,
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Practical considerations such as hardware complexity often motivateamov bound in Theorem 3 using an approximation to the Rankin
imposing additional constraints on the elements of the codebook. Ti@und as the minimum distance.

Grassmannian beamforming criteridas still applicable to the design

of these constrained codebooks. Solving for the optimum beamformifg Diversity Order

vector, however, requires restricting the line packing mdffixo be  cjosed-form results on the average probability of symbol error for
an element of a class of constrained beamforming vedtgrswhere quantized beamforming and combining systems are difficult if not im-

N N
Vi, C U, . . . . o possible to determine. Therefore, we use the diversity order perfor-
One popular constraint, as discussed in Section I, is to impose tignce metric defined in Section Il which is indicative of the high-SNR
requirement that every coefficient & have the same constant mod-eformance of various linear modulation schemes. The following the-

ulus. In these QEGT systems [17], [20] orem, proved in Appendix B, determines a bound\that guarantees
) ) 1 a diversity order ofM,. M, for codebooks designed according to the
Vir, = {V €Uny, Vh 1 Vil = W} Grassmannian beamforming criteridn Section 1V assuming MRC
VL

at the receiver. The trick in proving the theorem is to recognize that
A Grassmannian beamforming QEGT codebook is then designedthg codebook matrix resulting from ti@rassmannian beamforming

solving criterion is guaranteed to be full rank. This full rank assumption can
be trivially satisfied if a rank degenerate codebook witR alimen-
W = arg max §(X). (23) sional null space is designed for > A1, by replacing thei” vectors
Xevil, in the codebook that can be written as linear combinations of the other

(N — K) vectors with thell” orthogonal vectors that span the null space
Numerical optimization techniques (such as those in [40]) are oftgfee Lemma 3).
ineffective in designing QEGT codebooks. For this reason, random ) ) .
search based designs often yield codebooks with the best minimun] "€orem 4: If N > A1y, then theGrassmannian beamforming cri-
distance. Suboptimal methods for designing QEGT codebooks wigonyields QMRT, QEGT, and GSS codebooks that have full diver-

proposed in [17], [20] but often perform worse than QEGT codebooRYY Order.

designed using (23) (s€REGT Experimenin Section VI for an ex-  Equality in Theorem 4 is achieved whéh = M, . In this case, the
ample). Other QEGT codebooks are available from the codebooks ggdebook matrix is simply a unitary matrix (i.8" W = I,;,) and,
signed from the noncoherent codes in [44]. As stated earlier, the coflfys, the codebook is any set of orthonormal vectors. Unfortunately,
books in [44] are often optimal or near optimal even for the uncof-can be readily shown (using the unitary invariance of the Gaussian
strained QMRT case. Therefottbere is often no difference in perfor- gistribution) that this is equivalent to selection diversity. While such
mance between QMRT and QEGT when using codebooks designed ¥dehooks provably obtain full diversity order, choos¥g> M, will

the Grassmannian beamforming criterion. more closely approximate the optimal MRT solution and result in a
Another constraint of interest is to use only antenna combinatiopgger array gain.

that transmit on subsets of antennas. This corresponds to using beam-
forming vectors that pick a numbeér< M < M, and then select the B, Capacity

bestM antennas to transmit on. Thus, we choose one_ of the T‘O”emp‘yrhe capacity loss associated with using quantized beamforming is
members of the power set éf, ..., M;} and transmit on this an-

ian inmportant indicator of the quality of the quantization method. To
determine this loss, we compare the capacity assuming perfect beam-
forming with the capacity assuming the use of quantized beamforming.
%seing this difference we derive a criterion for choosiigrased on an
acceptable capacity loss.
Consider the system equation in (1) with the scalar effective channel
W = arg max 8(X) (24) produced by beamforming” Hw (recall thatw andz are unit norm).

method, is a discrete system that can be represented Via-4it code-
book. If M, is large, we might wish to use fewer tha#, bits for our
generalized subset selection system. In this case, we would pick
codebook matri¥ that satisfies

Xerly, With MRT, the ergodic capacity of this scalar fading channel is given
by
WhereIﬁ,]'f is given by the set of matrices W]t where each column
can be represented as the normalized sum of unique column vectors Conquant = Exr {logQ <1 n /\1T&>} (25)
of I, . SinceZyy, has finite cardinality, the global maximum to (24) No

can be obtained by performing a brute-force search over all matrice%\me

. . . H . . . .
I3y, - GSS codebooks provide better performance than selection diver: rel, is the maximum eigenvalue & i while with quantization
; o . L is given by
sity because additional vectors are included to allow a better quantiza-

tion of the optimal beamforming vector. Cnane = Eat {logz <1 + ||HQw£f)||§Et)] _ (26)
V. BOUNDS ONCODEBOOK SIZE Notice that we are computing the ergodic capacity of the equivalent

Codebook size naturally has an impact on the performance Ofaéiing _cha_mn(_al angl we are hot attempting 0 f_uIIy op_timize over the
quantized beamforming system. To obtain a good approximation gput distribution given partial channel |nformat|0n asin [24].'
the optimal beamforming vector, it is desirable to chodstarge. On TQ compute a rule O.f thumb for cho_osM‘vg based on a_deswed ca-
the other hand, minimizing the required feedback motivates choosi‘f’]@]cIty loss, we approximate the quantized and unquantized capacity as
N small. In this section, we derive the minimum valueMfrequired || H Qu(H)||3E:
to achieve full diversity order with codebooks designed using the No )]
Grassmannian beamforming criterioe also find approximate and
lower bounds onV given an acceptable loss in capacity or SNR due A&
to quantization. These bounds function similarly to the Gilbert-Var- Cunquane % {10g2 (W)] ) (28)

Cquant = En {log2 ( (27)
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Fig. 2. Capacity comparison of unquantized beamforming with three Grassmannian beamforming scheres fosystem.

The capacity loss due to quantization for high SNR (using the tech-Equivalently, the corresponding number of bits of feedbgick=

nigues that bounded distortion) is given by log, V') should be chosen to be
Ciow = Ent {mgQ <1 + Al;_;t)} b Z logy (1 = Croms )+ 2(M; — 1) + (M; — 1) log, <Mj”i 1) .
— Ey [logQ (1 n | H Qu(H)||5€ >] The last term corresponds to at mag$t — 1 thus, at mos8(M; — 1)
No bits of feedback or less are needed depending on the tolerable loss.
< B lloe. (1 A& This bound is once again approximate, but it gives insight into the
S B logy {1+ Ny feedback amount required. Fig. 2 provides further intuition by showing
ME ) a plot of the capacities for 4 x 2 systems using unquantized beam-
—En {10& (1 N [u1 Qu(H)| ﬂ (29)  forming and three different types of Grassmannian beamforming sys-
0 (M- 1) tems: QMRT withN = 64, QMRT with N =16, and selection diver-
~ Cunquant (1 - N <@) > sity. QMRT with N' =64 provides approximately a 1.5-dB gain com-
2 pared to selection diversity and a 0.5-dB gain compared to QMRT with
[ 8(W) 2(M;—1) 5(W) 2 N =16. This plot clearly shows the capacity benefit of increaskg
— N <—) log, | 1 — <T) (30)
C. SNR
~C 1 A,(M_W))Z(Mtl) (31 _ Consider the expression for the normalized SNR I6%8V) ob-
unauant 2 ' tained from (21)
The result in (29) follows from zeroing the other channel singular G w) = GW)
values, and (30) results from using the minimum-distance boundaries EnlM]
of the metric balls and the high-SNR approximation @@nquant - _(8(W) 2(My—1) 5 (W)
Therefore, an approximate bound on the normalized capacity loss S|L+N <T) (T - 1) . (33)

O]nss = C]oss/cunquant |s glven bY(l - ZV(E(Z—W))Z(ZMt_l))-
Note that for the cases of largé, the Rankin bound oA(W) in  Justas an approximate bound féris derived in Section V-B given an

(8) in this case is approximately += . Substituting fors (W), we acceptable capacity loss due to quantization, a criterion for choosing

My * N . o
obtain a selection criterion (rule of thumb) &hbased on capacity loss. N, ba§eq onan acceptab!e normahzgd SNR @ssllows from (33).
t?ubstltutlng in the approximate Rankin bound of

Capacity Loss Criterion: Given an acceptable normalized capaci

lossCl.ss, ChooseN such that M, —
o 4M, \ M ~ M,
N Z (1 - Closs) - . (32) . . . o
~ M, -1 we obtain the following approximate criterion.
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Average probability of symbol error

Fig. 3. Probability of symbol error for three transmit and three receive antenna systems using QMRT/MRC, SDT/MRC, and MRT/MRC.

SNR Criterion: Given an acceptable normalized SNR l085 mission, and generalized subset selection. All simulations used

chooseN such that binary phase-shift keying (BPSK) modulation and i.i.d. Rayleigh
e fading (where Hy;, ;) is distributed according t@€A(0, 1)). The

NZ 1 . (34) average probability of symbol error is estimated using at least 1.5

(Aﬁil) (1 - Aﬁ;tl) million iterations per SNR point. Codebooks for the QEGT and

QMRT systems were designed based on the propGsadsmannian
Once again, this bound is only approximate because it uses the Rajd@mforming criterionThe codebooks were found using the optimal
bound approximation but yields intuition into the choiceof constructions available in [39], [44]. GSS codebooks are globally
Following the analysis in Section V-B, the corresponding approxgptimal since searching over all possible codebooks is feasible. All of
mate number of bits of feedba¢k = log, V') should be chosen to be the simulations assume an MRC receiver.

M, > QMRT Experiment 1:In the first experiment, aiif, = M, = 3

M—1 system with QMRT is simulated with two different quantizations and
/ the results shown in Fig. 3. The vectors in the 2—bit codebook are shown
—log, <1 _ M- 1) . (35) inTableIVinAppendix A. The 6-bit codebook has a maximum abso-
- 4M; lute correlation 0f).9399. The simulated error-rate curve of an optimal
In (35), at mosB(A; — 1) — log, (1 — =1 bits of feedback or less u_nqua_ntized beamformer and the actual_error-rat_e curve for a selection
are needed depending on the toIerabAtIéijoss. d_lversny system are shown for comparison. Notice that QMRT pro-
As an aside, we should point out thg[\:] can be expressed in aV|des a 0.2-dB gain over selection diversity for the same amount of
edback. Using 6 bits instead of 2 bits of feedback provides around

closed-form integral expression using techniques from [15], [18], [4§. . . X o
This is of particular interest if bounds oW were desired that were fo'g'dB gain. The system using 6 bits performs within 0.6 dB of the

a function of an SNR loss that was not normalized. In [18], [45], th%ptimal unquanti_zed MRT system. L hni
probability density function of the largest singular value of a central, QMRT Experiment 2:In [24], vector quantization techniques

complex Wishart distribution is derived, while the cumulative distribu¢™® used to de5|gn_ QMRT codeb_ooks. In th's_ exp_erlment, we
pare a system using Grassmannian beamforming (i.e., quantized

tion function is derived in [15]. These results can also be used to der i . ; . .
integral expressions for the outage probability as a generalizationb(ﬁ“amform!ng using a cpdebook deS|gn_ed with taeassmannl_an
results in [22]. beamforming crlte_rloh with a system using a codebo_ok designed
by the Lloyd algorithm. The Grassmannian beamforming codebook
is shown in Table Ill in Appendix A. Codebooks containing eight
vectors were designed for @, = M, = 2 system. The results are
We simulate three different quantized beamforming schemeshown in Fig. 4. This simulation provides additional evidence of the

quantized maximum ratio transmission, quantized equal gain tranadidity of the proposed design criterion. Thus, we are able to design

bZlog,(1-G)+2(M— 1)+ (M, — 1)10g2<

VI. SIMULATIONS



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003 2743

I T I
—&- 3 bit Design Criteria ]

Average probability of symbol error

Fig. 4. Probability of symbol error for two transmit and two receive antenna systems using QMRT codebooks designed with the proposed critetion and wit
vector quantization.

codebooks that perform just as well as the codebooks performed using VII. CONCLUSION AND FUTURE WORK
computationally complex vector quantization algorithms.

QEGT Experiment:In this experiment, two different methods of In this correspondence, we derived a codebook design criterion for
QEGT codebook design are compared on a three transmit and thregltgntizing the transmit beamforming vectors in a MIMO wireless
ceive antenna system. The results are shown in Fig. 5. The new metR@@munication system. By bounding the SNR degradation for a given
refers to codebooks constructed using@rassmannian beamforming codebook size, we showed that the problem of designing beamformer
criterion. The 3-bit new codebook has maximum absolute correlatigi®debooks is equivalent to Grassmannian line packing, which is the
of 0.5774 and the 5-bit new codebook has maximum absolute correroblem of maximally spacing lines in the Grassmann manifold. To
tion of 0.8836. The old method refers to the codebook design meth@pproximate the feedback requirements, we used the Rankin bound
outlined previously in [17], [20]. along with several newly derived results for line packings such as a

A 3-bit new design method QEGT codebook performs approglosed-form density expression, the Hamming upper bound on the
imately the same as a 5-bit old design method QEGT codebodRinimum distance and codebook size, and the Gilbert-Varshamov
Thus, we can use two fewer bits of feedback and actually maintd@wer bound on the codebook size.
the average symbol error rate performance by using GrassmanniaA point that we did not address in detail pertains to implementation.
beamforming. Performance improves by 0.5 dB when changing froBrassmannian beamforming will likely be implemented in a lookup
3-bit new QEGT to 5-bit new QEGT. Thus, we can either gain 0.5 d@ble format. When the channel is slowly varying, it may be possible to
and use the same amount of feedback or keep the same performaadece the necessary number of bits sent back by using some successive
and save 2 bits of feedback by using tBemssmannian beamforming refinement techniques based on channel correlation. One solution is
criterion. to have a series of codebooks for different valuesvVothat support

Comparison ExperimentThe final experiment, shown in Fig. 6, successive refinement along the lines of [46].
compares GSS and QMRT codebooks for a four transmit and two re-Another important point in a practical implementation is the effect of
ceive antenna system. The 4-bit codebook has a maximum absolute eseback error and delay in the feedback link. We did not address this
relation of0.5817, while the 6-bit codebook has a maximum absolutissue in our work because we modeled the feedback link as error and
correlation 0f0.7973. A 4-bit QMRT system outperforms a 4-bit GSSdelay free. An extensive simulation and/or analytical study of beam-
system by approximately 0.5 dB. This illustrates that even a substanf@imer quantization such as that in [47] is needed. These effects will
restriction on the nature of the codebook does not severely impact geley an important role in performance in deployed MIMO systems
formance when designed using tBeassmannian beamforming crite- using quantized beamforming.
rion. A 6-bit QMRT system has an array gain of approximately around Finally, one limitation of the work proposed here is that we consid-
0.5 dB compared to a 4-bit QMRT system. This illustrates the benered only the transmission of a single data stream. It is well known,
fits of increasing the amount of quantization even when a significahbwever, that MIMO channels can increase capacity by supporting the
amount of quantization is already used. transmission of multiple data streams simultaneously ([1], [2], etc.). In
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Fig. 6. Comparison of probability of symbol error for four transmit and two receive antenna systems using QMRT/MRC and GSS/MRC.
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the general case with full channel knowledge at the transmitter, itis pos- TABLE | )
sible to transmit on multiple right singular vectors with the number of ~ TRIVIAL CODEBOOK GENERATED FORM; = 2 AND N = 2 (1 BIT)
vectors and the power on each vector being determined by the desired 110

011
Absolute Max Correlation = 0
Absolute Theoretical Max Correlation = 0

optimization criterion. For example, the capacity-achieving solution is
determined by waterpouring on the channel’s nonzero singular values. |
A natural extension of our approach would be to derive codebooks for

quantizing each of the singular vectors. While our Grassmannian code- TABLE I

books could be used, they do not retain the orthogonality between the CODEBOOK GENERATED FORM; = 2 andN = 4 (2 BITS)
guantized singular vectors. Constructing codebooks for simultaneousll 0.1612 - 0.7348; | -0.0787 - 0.3192] | -0.2399 + 0.5985; I 09541 |

quantizing multiple singular vectors is an interesting topic for future | -0.5135 - 0.4128j [ -0.2506 + 0.9106j | -0.7641 - 0.0212j | 0.2996
work. Absolute Max Correlation = 0.57735
Absolute Theoretical Max Correlation = 1/1/3
APPENDIX TABLE IlI
CODEBOOK GENERATED FORM; = 2 andN = 8 (3 BITS)
A. Tables of Line Packings 0.8393 - 0.2939) | -0.3427 + 0.9161] | -0.2065 + 0.3371] '
Examples of the packings found for variodd, are given in Ta- -0.1677 + 0.4256) | 0.0498 + 0.2019 | 0.9166 + 0.0600;
bles I-V. The codebook found usi d h th h 0.3478 - 0.3351j | 0.1049 + 0.68205 | 0.0347 - 0.2716j
es I-V. The codebooks were found using random searches or throug 0.2584 + 0.8366] | 0.6537 +0.3106j | 0.0935 - 0.9572;
some of the constructions presented [39] depending on the choice of 0.7457 + 0.1181) | -0.7983 + 0.3232j
parameters. -0.4553 - 0.4719j 0.5000 + 0.0906j
Absolute Max Correlation = 0.84152
Absolute Theoretical Max Correlation = {/3/7
B. Proof of Theorem 4 /
Before proving Theorem 4, we need to prove the following lemma TABLE IV
that establishes th3¥ is full rank for codes designed according to the CODEBOOK GENERATED FORV; = 3 andN = 4 (2 BITS)
Grassmannian beamforming criterion. 1/V3 | 3/V3 ]| —1/v3 | —j/V3
. . . 1/vV3 | -1/V3 1/vV3 | -1/v3
Lemma 3: If N > M, thenW is full rank when designed using the IV3 ./‘/— /V3 ./‘/_
; A V3| —j/V3 | -1V3 | i/V3
Grassmannian beamforming criteridor QMRT, QEGT, or GSS. Absolute Max Correlation = 1/3
Proof: Suppose thatV > M; and all optimal maximum Absolute Theoretical Max Correlation = 1/3
minimum-distance packings are not full rank. J& be an optimal
codebook matrix with d-dimensional null space. Lat;,, w;,, ..., TABLE V
w; _,, be columns that form a basis for the column space of =~ CODEBOOK GENERATED FORV; = 3 andV = 8 (3 BITS)
W . Because the columns & do not spanCMt, there exists an —\}2. % 0 ‘2e2"i/3
orthonormal basiw, vs, ..., vk for the null space. Then we can L o 2 L edmi/3
N ) vz 2 | V2
construct a new, full rank codebook matd with 6(W) < 6(X) 0 —\‘ﬁ %
by settingz; = v, forl < K andz, = Wi for K <1 < N. %ehz/li 756410 3 [ L 47573 0
This is a contradiction. We can therefore trivially construct a full rank 0 0 %em’/a 12 edmi/3
codebook. (] 1 gdmj/3 | L 2mj/3 0| Le2mi/3
2 V2 V2

Absolute Max Correlation = 0.5

Now we prove Theorem 4. This proof holds for any quantized beam-
p P - Absolute Theoretical Max Correlation = {/5/21

forming technigue (not just Grassmannian beamforming) that uses a

codebook with at least/; vectors and has a full rank codebook ma-

trix. By the invariance of complex normal random matrices [41{,7{1 is
equivalent in distribution td . Therefore,

Proof: First consider the receive SN&,I'./Ny. Since&; and
N, are assumed fixed, we only need to consBer= |z Hw|*. It .20, = max |HU w;|)3. (37)
has been shown for a fixed realization Bfthat the vectorse andz =
that maximizgz* Hw| are the left and right singular vectorsBfcor-  Now using matrix norm inequalities taken from [48], stated for the real
responding to the largest singular valuelbf{14], [15]. This solution case but easily seen to extend to the complex case, we find that
has been shown to achieve a diversity orderfi1; [13], [15]. Quan-

o . H_ . 112
tized beamforming can perform only as well as the unquantized case, L= 12N IHU Y wil2 (38)
therefore, the achievable diversity order with quantized beamforming S 1 HUA W2 39
is upper-bounded b7, M,. To prove equality, we will now show that =M, I WL (39)

M, M, is a!so the lower bounq on the achievable dlve_rsny order. Using the SVD, (39) can be rewritten as
For an N vector beamforming codebook system with MRC at the

receiver, the effective channel gain is given by P>t |HUY U, [ DO |?
"= M.
- 12 1 = 2
Lr = max |[Hwil:. (36) = (2D 0] v 1 (40)

Because the columns of the codebook malfixspanC*t, W can Where0 is anM, x (N — M;) matrix of zeros.
be factored via a singular value decomposition (SVD) into the form By the matrix submultiplicative property [48]
W = U.[D 0)U, wherelU, is anM; x M, unitary matrix,0 is an ~ " < "
M, x (N — M,) matrix of zeroslU» is anN' x N unitary matrix, andD H [HD 0] U 1 1021 2 H [HD 0] U.U>
is a real diagonal matrix witl, ;> Dz 21 > -+ > D, m, > 0. =||HD|.

1
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Then using an inequality property of the matrix one- and two-norm  [14]
|HD]|, < H [HD g VN
[15]
[HD o] Uz (41)
or rather [16]
|[2D 0] ’ >3 ||HD||1. @2) 17
Applying this bound we find that [18]
r V’\[ ”HD”l [19]
D Aft 7\Ii
D 1M
(M M) max |Hp; I°. (43)

- NM, i

The lower bound o, is the effective channel gain of a system

which selects the largest gain channel from améng\{, i.i.d. com-
plex Gaussian random variables with, rr,; > 0. Diversity sys-
tems of this form have been shown to achievéan\, diversity order

(21]

(22]

(23]

[28], [49]. The scale factor ofM can simply be interpreted as a

loss of array gain but not affectlng the asymptotic diversity slope.

[24]

Combining the lower and upper bounds on diversity order, we have
shown that at high SNR, quantized beamforming obtains a diversity
order of M, M,. The guarantee of diversity order is an important per-
formance indicator for the quantized beamforming system. Note th
this proof also verifies the diversity results in [12], [13], [17]. O

(26]
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Abstract—In this correspondence, we show that for an(Q X M) use, i.e., they define the rafé via

space-time codeS having a fixed, finite signal constellation, there is a po 1 loe. 1S
tradeoff between the transmission rateR and the transmit diversity gain v R = M g, |S|.
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there is a tradeoff between the rate and transmit diversity gain of the

space—time code.

Il. RATE-DIVERSITY TRADEOFF

I. INTRODUCTION ) ) o . ) )
Theorem 1: Given the desired transmit diversity gairand signal

Consider a space-time coded system wititransmit andP” re-  constellation4 with | A| = a < oo, the size of the space—time cafle
ceive antennas. Under the quasi-static Rayleigh fading assumption,ithgpper-bounded by
channel is fixed for a duration dff symbol transmissions. In general, M(Q—vt1)
we will assume < M. Let A denote the signal alphabet (constel- IS| < a . 3)
lation) andS C A% be a space—time code. Each codeword in theence. the rat@® has the upper bound
space—time code is thug & x M) matrix. '
N . _ R<Q-v+1 (4)
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