
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003 2735

Grassmannian Beamforming for Multiple-Input
Multiple-Output Wireless Systems

David J. Love, Student Member, IEEE,
Robert W. Heath, Jr., Member, IEEE, and Thomas Strohmer

Abstract—Transmit beamforming and receive combining are simple
methods for exploiting the significant diversity that is available in
multiple-input multiple-output (MIMO) wireless systems. Unfortunately,
optimal performance requires either complete channel knowledge or
knowledge of the optimal beamforming vector; both are hard to realize.
In this correspondence, a quantized maximum signal-to-noise ratio (SNR)
beamforming technique is proposed where the receiver only sends the
label of the best beamforming vector in a predetermined codebook to
the transmitter. By using the distribution of the optimal beamforming
vector in independent and identically distributed Rayleigh fading matrix
channels, the codebook design problem is solved and related to the
problem of Grassmannian line packing. The proposed design criterion
is flexible enough to allow for side constraints on the codebook vectors.
Bounds on the codebook size are derived to guarantee full diversity order.
Results on the density of Grassmannian line packings are derived and
used to develop bounds on the codebook size given a capacity or SNR loss.
Monte Carlo simulations are presented that compare the probability of
error for different quantization strategies.

Index Terms—Diversity methods, Grassmannian line packing, limited
feedback, multiple-input multiple-output (MIMO) systems, Rayleigh chan-
nels.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless systems make use
of the spatial dimension of the channel to provide considerable capacity
[1], [2], increased resilience to fading [3]–[5], or combinations of the
two [6]–[8]. While the spectral efficiency improvement offered by
MIMO communication is substantial, the reductions in fading obtained
by trading capacity for spatial diversity should not be overlooked [9],
[10]. In narrow-band Rayleigh-fading matrix channels, MIMO systems
can provide a diversity in proportion to the product of the number of
transmit and receive antennas. Diversity in a MIMO system can be
obtained through the use of space–time codes (see e.g., [3]–[5]) or via
intelligent use of channel state information at the transmitter (see, e.g.,
[11]–[17]). Transmit beamforming with receive combining is one of the
simplest approaches to achieving full diversity and has been of interest
recently [12]–[20]. Beamforming and combining in MIMO systems
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are a generalization of the vector channel beamforming/combining
methods found in single-input–multiple-output (SIMO) combiners
and multiple-input–single-output (MISO) beamformers which provide
significantly more diversity. Compared with traditional space–time
codes [3]–[5], beamforming and combining systems provide the same
diversity order as well as significantly more array gain [21] at the
expense of requiring channel state information at the transmitter
in the form of the transmit beamforming vector (see, for example,
[13]–[20]). Unfortunately, in systems where the forward and reverse
channels are not reciprocal, this requires coarsely quantizing the
channel or beamforming vector to accommodate the limited bandwidth
of the feedback channel.

In this correspondence, we consider the problem of quantized
beamforming for independent and identically distributed (i.i.d.)
MIMO Rayleigh flat-fading channels when the transmitter has access
to a low-bandwidth feedback channel from the receiver and the
receiver employs maximum ratio combining (MRC). To support the
limitations of the feedback channel, we assume the use of a codebook
of possible beamforming vectors known to both the transmitter and
receiver. The codebook is restricted to have fixed cardinalityN
and is designed off-line. The receiver is assumed to convey the best
beamforming vector from the codebook over an error-free, zero-delay
feedback channel. A primary contribution of this correspondence is to
provide a constructive method for designing a quantized beamforming
codebook. We show, using the distribution of the optimal unquantized
beamforming vector, that the codebook design problem is equivalent
to the problem of packing one-dimensional subspaces known as
Grassmannian line packing.1 These codebooks are a function of
the number of transmit antennas and the size of the codebook but
are independent of the number of receive antennas. We show that
a sufficient condition for providing full diversity order is that the
codebook cardinality is greater than or equal to the number of transmit
antennas. We consider codebooks with additional constraints imposed
on the beamforming vectors such as constant modulus entries or
generalized subset selection.

The connection between Grassmannian line packing and quantized
beamforming allows us to leverage results from the subspace packing
literature to find constructive methods for deriving codebooks and also
provides insight into codebook quality. In order to understand how the
amount of feedback relates to system performance, we derive a new
closed-form expression for the density of line packings based on a re-
sult from [22]. The density expression verifies the asymptotic subspace
packing density presented in [23] and allows us to derive the Hamming
bound and the Gilbert–Varshamov bound on codebook size. We use
these results to obtain approximate bounds for choosing the codebook
size based on a specific allowable capacity or average signal-to-noise
ratio (SNR) loss.

Unquantized beamforming for MIMO systems was first proposed
in [13]–[15]. Prior work on quantized beamforming, proposed in [24],
addressed the problem of quantizing the maximum ratio transmission
(MRT) [13]–[15] solution, which we call quantized maximum ratio
transmission (QMRT). The beamforming codebooks proposed there
were obtained using the Lloyd algorithm and a specific codebook de-
sign methodology was not developed. Additionally, the results were
specialized only to MISO systems though, as we show, they are appli-
cable to the MIMO case as well. The problem of quantizing the equal
gain transmission (EGT) solution was proposed in [25]. The solution
proposed there uniformly quantized the phases of the channel and does

1Recall that Grassmannian line packing is the problem of spacingN lines that
pass through the origin in order to maximize the sine of the minimum angular
separation between any two lines.
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Fig. 1. Block diagram of a MIMO system.

not make the connection to line packing. Different codebooks were de-
signed in [17], [20], extending the work in [25], but are still suboptimal
since they are required to use codebooks containing a set of orthogonal
vectors to satisfy the supposition for the proof of diversity order. Varia-
tions of QMRT and quantized EGT (QEGT) are part of the wide-band
code division multiple access (WCDMA) closed-loop diversity mode
[26]. The proposed solutions are specialized for two transmit antennas
and essentially quantize the channel from one of the antennas. Transmit
antenna selection for MIMO systems is a special case of quantized
beamforming and has been proposed in [27], [28] for the MISO case
and [11], [12] for the MIMO case.

The relationship between quantized beamforming and Grassman-
nian line packing was observed in [22], [29]–[31] in parallel and in-
dependently of our work in [32]–[35]. Their analysis, however, is ex-
plicitly for the MISO scenario and does not encompass MIMO beam-
forming and combining systems. Additionally, [22], [29]–[31] do not
specifically address the design of hardware-constrained beamformers.
Imposing additional constraints on the beamforming vector codebook,
such as equal gain coefficients or selection columns, makes limited
feedback precoding more practical than with arbitrary codebooks (e.g.,
see the closed-loop mode in the WCDMA standard [26]). In addition,
we propose new results in Grassmannian line packing that are of use
in judging the optimality of the designed quantized beamformers. Our
analysis considers the amount of feedback required given acceptable
losses in capacity or SNR.

This correspondence is organized as follows. Section II reviews
beamforming and combining in MIMO systems and states the quan-
tized beamforming problem. Grassmannian line packing is reviewed
in Section III, and some results on the minimum distance and density
are derived. Section IV examines the distribution of the optimal
beamforming vector, proposes a distortion criterion, and then relates
the problem of quantizing this vector to the problem of Grassmannian
line packing. Different performance criteria are studied in Section V
to provide some insight on selecting the codebook size. Section VI
presents Monte Carlo simulation results that illustrate performance as
a function of the amount of feedback available. The correspondence
concludes in Section VII with some suggestions for future work.

II. SYSTEM OVERVIEW

A MIMO system with transmit beamforming and receive combining,
usingMt transmit antennas andMr receive antennas, is illustrated in
Fig. 1. Suppose that the bandwidth is much smaller than the coherence
time of the channel thus the discrete-time equivalent channel can be
modeled as anMr�Mt matrixHHH. Then the discrete-time input/output
relationship at baseband, given a real or complex transmitted symbol

s, for this system is given by2

x = zzz
H
HHHwwws+ zzz

H
nnn: (1)

The vectorswww andzzz are called the beamforming and combining vec-
tors, respectively. The noise vectornnn has i.i.d. entries distributed ac-
cording toCN (0; N0). We model the channelHHH as having i.i.d. en-
tries distributed according toCN (0; 1). The channel is assumed to
be known perfectly at the receiver. The symbol energy is given by
Es[jsj

2] = Et.
In a beamforming and combining system, the key question is how to

designwww andzzz to maximize performance. It has been shown [15], [16],
[28] thatwww andzzz should be chosen to maximize the SNR in order to
minimize the average probability of error and maximize the capacity.
For the proposed system, the SNRr , after combining at the receiver,
is

r =
Etjzzz

HHHHwwwj2

kzzzk2
2
N0

=
Etkwwwk

2

2

zzz

kzzzk
HHHH www

kwwwk

2

N0

: (2)

Notice that in (2),kzzzk2 factors out, therefore, we fixkzzzk2 = 1 without
loss of generality. As well, the transmitter transmits with total energy
Etkwwwk

2

2, therefore, we assume thatkwwwk2 = 1 and thatEt is held con-
stant for power constraint reasons. Using these assumptions

r =
Er
N0

=
Etjzzz

HHHHwwwj2

N0

=
Et���r
N0

(3)

where���r = jzzzHHHHwwwj2 is the effective channel gain.
In a MIMO system, unlike in a MISO system, both a transmit beam-

forming vector and a receive combining vector need to be chosen. A
receiver wherezzz maximizesjzzzHHHHwwwj givenwww is called an MRC re-
ceiver. The form of this vector follows from the vector norm inequality

jzzzHHHHwwwj2 � kzzzk22kHHHwwwk
2

2: (4)

We already definedkzzzk22 = 1, thus, the MRC vector must set

jzzzHHHHwwwj2 = kHHHwwwk22: (5)

2We usew to refer to theith entry of the vectorwww, H to refer to the
(k; l) entry of a matrixHHH , to denote matrix transposition,to denote matrix
conjugate transposition,j � j to denote absolute value,k � k to denote the matrix
two-norm,k � k to denote the matrix one-norm,j =

p�1; to denote the
m-dimensional complex vector space,
 to refer to the set of unit vectors in

; U is the set ofm�N complex matrices with unit vector columns, and
E [�] to denote expectation with respect to a random variabley.
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This is easily seen to be the unit vectorzzz = HHHwww=kHHHwwwk2. We assume
that the receiver always uses MRC.

The beamforming vectorswww andzzz can be designed to maximize the
SNR under different side constraints depending on implementation is-
sues. Since we assume optimal combining at the receiver, we are pri-
marily concerned with selectingwww. The four interesting cases are max-
imum ratio transmission, equal gain transmission, selection diversity
transmission (SDT), and generalized subset selection (GSS). A trans-
mitter wherewww maximizesjzzzHHHHwwwj givenzzz is called maximum ratio
transmission (MRT). A transmitter wherewk satisfiesjwkj = 1p

M

for 1 � k � Mt is called equal gain transmission (EGT). Note
that this definition allowswww to be expressed aswww = 1p

M
ej��� where

��� = [�1�2 � � � �M ]T and�k 2 [0; 2�). SDT requires thatwww be one of
the columns ofIIIM , theMt�Mt identity matrix. A transmitter where
~www is the sum of columns ofIIIM andwww = ~www=k~wwwk2 is called general-
ized subset selection (GSS). This corresponds to vectors of the form

www =
1p
K

K

k=1

(IIIM )n

where(IIIM )n is thenkth column ofIIIM andnk 6= nl for knTeql.
GSS is clearly a generalization of SDT when more than one radio chain
is available. This method corresponds to transmitting on subsets of an-
tennas depending on channel conditions.

Given no design constraints on the form of the unit vectorswww orzzz and
a fixedN0, the optimal solutions in an average probability of symbol
error sense are the beamforming and combining vectors, respectively,
that maximizeEr . For a combining scheme that solves for the beam-
forming vectorwww using the feasible set3 W (W � 
M ) with an MRC
receiver,www is given by

www = argmax
xxx2W

kHHHxxxk2 (6)

whereargmax returns a global maximizer. Note that this optimization
returns onlyoneout of possiblymanyglobal maximizers meaning that
the global maximizer over mostW is not unique. Notice that ifW =

M , the case for an MRT system, thenwww is the dominant right singular
vector ofHHH , the right singular vector ofHHH corresponding to the largest
singular value ofHHH [14], [15].

In this correspondence, we consider a communication link where
channel state information is not available to the transmitter, but there
exists a low-rate, error-free, zero-delay feedback link for the purpose of
conveyingwww to the transmitter. Sincewww can be any unit vector in pos-
sibly a continuum of feasible vectors(
M for MRT), it is essential to
introduce some method of quantization due to the limited reverse-link
feedback channel. A reasonable solution is to let the receiver and trans-
mitter both use a codebook ofN beamforming vectors [24], [25]. The
receiver then quantizes the beamforming vector by selecting the best
(according to (6)) beamforming vector from the codebook and con-
veys the index of this vector back to the transmitter. The main benefit
of using a finite codebook is that the number of feedback bits can be
kept to a manageable number given bydlog

2
Ne. Unfortunately, it is

not obvious whichN vectors should be included in the codebook.
To compare the performance of different quantized and unquantized

beamformers, we use the average probability of symbol error defined as
Pe = EHHH [Pe], where the expected value of the probability of symbol
errorPe is taken over the channelHHH . Two measures that are relevant
when comparing average probability of symbol error are array gain and
diversity order. A system is said to havearray gainA anddiversity
orderD if for SNR � 0 the average probability of symbol error is
inversely proportional toA(Et=N0)

D [6].

3A feasible set is the set that a cost function is maximized over.

III. GRASSMANNIAN LINE PACKING

Grassmannian line packing is the problem of optimally packing
one-dimensional subspaces [36]. It is similar to the problem of
spherical code design with one important difference: spherical codes
are points on the unit sphere while Grassmannian line packings are
linespassing through the origin in a vector space. Grassmannian line
packing forms the basis for our quantized beamforming codebook
design. In this section, we present a summary of key results on
Grassmannian line packing and some new results. The terminology
follows from the work of researchers in Grassmannian subspace
packing (see, for example, Sloane’s webpage [37]).

Consider the space of unit-norm transmit beamforming vectors
m.
Let use define an equivalence relation between two unit vectorswww1 2

m andwww2 2 
m bywww1 � www2 if for some� 2 [0; 2�); www1 = ej�www2.
This equivalence relation says that two vectors are equivalent if they
are on the same line inm. The quotient space with respect to this
equivalence relation is the set of all one-dimensional subspaces inm

[38]. The complexGrassmann manifoldG(m; 1) is the set of all one-
dimensional subspaces of the spacem. We define a distance function
on G(m; 1) by letting the distance between the two lines generated
from unit vectorswww1 andwww2 be the sine of the angle�1; 2 between the
two lines. This distance is expressed as [23]

d(www1; www2) = sin(�1;2) = 1� jwwwH
1
www2j2:

TheGrassmannian line packing problemis the problem of finding
the set, or packing, ofN lines in m that has maximum minimum
distance between any pair of lines. Because of the relation to
m,
the problem simplifies down to arrangingN unit vectors so that the
magnitude correlation between any two vectors is as small as possible.
We represent a packing ofN lines inG(m; 1) by anm � N matrix
WWW = [www1www2 � � �wwwN ], wherewwwi is the vector in
m whose column
space is theith line in the packing. The packing problem is only of in-
terest in nontrivial cases whereN > m.

The minimum distance of a packing is the sine of the smallest angle
between any pair of lines. This is written as

�(WWW ) = min
1�k<l�N

1� jwwwHk wwwlj2 = sin(�min) (7)

where �min is the smallest angle between any pair of lines in the
packing. The problem of finding algorithms to design packings for
arbitrarym andN has been studied by many researchers in applied
mathematics and information theory (see [36], [39], [40], etc.). The
Rankin bound (see, for example, [23], [36], [39]) gives an upper bound
on the minimum distance for line packings as a function ofm and
N � m and is given by [23], [36]

�(WWW ) � (m� 1)N

m(N � 1)
: (8)

Another useful property of a packing besides the minimum distance
is the density. To define the density of a line packing, consider a metric
ball inG(m; 1). LetPvvv denote the line generated by a vectorvvv 2 
m

(i.e., the column-space of the vectorvvv). The ball of radius in G(m; 1)
around the line generated bywwwi is defined as

Bwww () = fPvvv 2 G(m; 1): d(vvv; wwwi) < g: (9)

Note

Bwww () \ Bwww () = � (10)

for k 6= l when � �(WWW )=2 where� is the empty set. Metric balls
in G(m; 1) can be geometrically visualized as spherical caps on
m.
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Thus, the ballBwww () is the set of lines generated by all vectors on the
unit sphere that are within a chordal distance of from any point in

m \ Pwww .

The normalized Haar measure on
m introduces a normalized in-
variant measure� onG(m; 1). This measure allows the computation
of volumes of sets withinG(m; 1) [38], and thus can be used to de-
termine the percentage ofG(m; 1) covered by the metric balls of a
line packing, called the density of a line packing. The density of a line
packing is defined as

�(WWW ) =�

N

i=1

Bwww (�(WWW )=2)

=

N

i=1

� (Bwww (�(WWW )=2))

=N� (B(�(WWW )=2))

whereB(�(WWW )=2) is an arbitrarily centered metric ball of radius
�(WWW )=2:.

Closed-form expressions for the density of Grassmannian subspace
packings are often difficult to obtain [23]. In the case of line packings,
though, we have found a way to calculate the density exactly. The result
is proved in Theorem 1.

Theorem 1: For any line packing inG(m; 1)

�(WWW ) = N (�(WWW )=2)2(m�1) : (11)

Proof: Let

Cwww () = fvvv 2 
m: d(vvv; wwwi) < g:

Using our previous observation

� (Bwww ()) =
A(Cwww ())

A(
m)
(12)

whereA(�) is a function that computes area. It was shown in [22]4 that

A(Cwww ())

A(
m)
= 2(m�1): (13)

The result then follows.

Theorem 1 provides insight into the rate at which the density grows
as a function of the minimum distance. This result specifically verifies
the asymptotic results in [23] for the one-dimensional subspace case.

The bound in Theorem 1 yields a new upper bound on the min-
imum distance of Grassmannian line packings. The Hamming bound
on the maximum minimum distance achievable by a Grassmannian line
packing of a fixed sizeN is the maximum radius of the metric balls be-
fore any two metric balls overlap.

Theorem 2: For anyN line packing inG(m; 1)

�(WWW ) � 2
1

N

1=(2(m�1))

: (14)

Proof: This follows by using the Hamming bound on codesize
[23],

N�(B(�(WWW )=2)) � 1:

Bounds on the existence of line packings of arbitrary radius also
follow from Theorem 1 using the Gilbert–Varshamov bound on code-
book size. The Gilbert–Varshamov bound is obtained by finding the
maximum number of metric balls of a desired minimum distance that
can be packed without coveringG(m; 1).

4Note that [22] evaluated the area ratio to derive the MISO outage probability
of quantized beamformers.

Theorem 3: Let N(m; �) be the maximum cardinality of a line
packing inG(m; 1) with minimum distance�. Then

��2(m�1) � N(m; �) � (�=2)�2(m�1) : (15)

Proof: The Gilbert–Varshamov bound applied to line packing
says that a packing of sizeN = M + 1 exists whenM�(B(�)) < 1
[23]. Using the fact that�(B(�)) = �2(m�1), the Hamming bound,
and solving forN gives (15).

Finding the global maximizer of the minimum distance for arbitrary
m andN is not easy either analytically or numerically [36]. For this
reason, it is often most practical to resort to random computer searches;
for example, see the extensive tabulations on [37] that have been com-
puted for the real case. In some cases, closed-form solutions are avail-
able, e.g., whenN = 2m = p�+1, wherep is prime and� is a positive
integer, conference matrices allow explicit constructions of packings
[39].

IV. CODEBOOK ANALYSIS AND DESIGN

In [14], [15] it is shown that an optimal beamforming vector for MRT
systems is the dominant right singular vector ofHHH with HHH defined as
in Section II. Therefore,wwwMRT that satisfies (6)(W = 
M ) is an
optimal MRT solution. A restatement of this is that the optimal vector
solves

wwwMRT = arg max
xxx2


jxxxHHHHHHHHxxxj: (16)

Recall thatargmax in this case (as mentioned in Section II) returns
only one out of possibly many global maximizers. Therefore, it is im-
portant to note that ifwwwMRT satisfies (16), thenej�wwwMRT also satisfies
(16) since

jwwwHMRTHHH
HHHHwwwMRTj = je�j�wwwHMRTHHH

HHHHej�wwwMRTj:

Thus, the optimal beamforming vector obtained from (16) is not
unique.

This property can be restated in terms of points on a complex line.
Because of the properties of the absolute value function, ifwww � ~www

(using the equivalence relation defined in Section III) thenwww and~www are
both global maximizers and thus provide the same performance. The
authors in [24] recognized this point and used this result in designing
the vector quantization algorithm for codebook design.

LetHHH be defined as in Section II with all entries independent. The
distribution ofXXX = HHHHHHH is the complex Wishart distribution [41].
An important property of complex Wishart distributed random matrices
that we need is summarized in Lemma 1.

Lemma 1 (James [41], Edelman [42]):If XXX is complex Wishart
distributed, thenXXX is equivalent in distribution toUUU���UUUH whereUUU is
Haar distributed on the group ofMt �Mt unitary matrices and��� has
distribution commonly found in [42].

Thus a matrix of i.i.d. complex normal distributed entries is invariant
in distribution to multiplication by unitary matrices. From this, it is
easily proven that the complex Wishart distribution is invariant to trans-
formation of the formVVV H(�)VVV whereVVV 2 UM whereUM is the
group ofMt � Mt unitary matrices. This is a trivial property in the
case of the single transmit antenna distribution because of the commu-
tativity of complex numbers, but this property has highly nontrivial im-
plications forMt > 1. A very important property of Haar distributed
matrices that will be exploited later is given in the following lemma.

Lemma 2 (Marzetta and Hochwald [43]) :Let UUU be a Haar dis-
tributedMt � Mt unitary random matrix. Ifvvv 2 
M thenUUUvvv is
uniformly distributed on
M .



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003 2739

One solution to (16) has a distribution equivalent toUUUHwwwMRT =
[1 0 0 � � � 0]T or ratherwwwMRT = UUU [1 0 0 � � � 0]T with UUU given
in Lemma 2. SinceUUU is Haar distributed onUM and[1 0 0 � � � 0]T

is a unit vector, Lemma 2 states thatwwwMRT = UUU [1 0 0 � � � 0]T is
distributed uniformly on
M . It similarly follows that the columns of
UUU and any unit norm linear combination of columns ofUUU are uniformly
distributed on
M .

This result, taken along with Lemma 1, reveals a fundamental result
about quantized beamforming systems that, until this point to the best
of the authors’ knowledge, has never been shown. The distribution
of the optimal beamforming vector is independent of the number of
receive antennas. Thus,the problem of finding quantized beamformers
for MISO systems is the same problem as that of finding quantized
beamformers for MIMO systems.Therefore, the MISO quantized
beamforming analysis contained in [24], [25] is directly applicable to
MIMO systems.

A corollary to Lemma 2 follows from observing that the optimal
beamformer is actually defined by a line.

Corollary 1: The line generated by the optimal beamforming vec-
tors for a MIMO Rayleigh-fading channel is an isotropically oriented
line in M passing through the origin. Therefore, the problem of quan-
tized transmit beamforming in a MIMO communication system re-
duces to quantizing an isotropically oriented line inM .

To find an optimal codebook we need to define an encoding func-
tion and a distortion measure. The optimal transmit beamformer and
receiver combiner maximize the receive SNR by maximizing the equiv-
alent channel gain���r in (3). Therefore, we use an encoding function
at the receiverQwww : M �M ! fwww1; www2; . . . ; wwwNg that selects the
element of the codebook that maximizes the equivalent channel gain.
Thus,

Qwww(HHH) = arg max
1�i�N

kHHHwwwik
2
2: (17)

Notice that this encoding function is not solely a function of the max-
imum singular value direction in the matrix channel case. The explana-
tion is that situations arise where it is better to use the quantized vector
that is close to some unit norm linear combination of theMt singular
vectors. For example, certain channels where all of the singular values
are equal would fall into this case.

To measure the average distortion introduced by quantization, we
use the distortion function

G(WWW ) = EHHH �1 � kHHHQwww(HHH)k22

where �1 is the maximum eigenvalue ofHHHH
HHH and the effective

channel gain for an optimal MRT beamformer. An upper bound is

G(WWW ) =EHHH �1 �

M

i=1

�i uuu
H

i Qwww(HHH)
2

�EHHH �1 � �1 uuu
H

1 Qwww(HHH)
2

=EHHH [�1]EHHH 1� uuu
H

1 Qwww(HHH)
2

(18)

where�1 � �2 � � � � � �M � 0 anduuu1; uuu2; . . . ; uuuM are the
eigenvalues and corresponding eigenvectors ofHHH

H
HHH. The inequality

in (18) follows from the independence of the eigenvalues and eigen-
vectors of complex Wishart matrices [38], [41].

The intuition behind the bound in (18) is that the first factor is an
indication of channel quality on average while the second factor is an
indication of the beamforming codebook quality. Using the interpre-

tation ofWWW as a line packing and thatuuu1 is uniformly distributed on

M , it follows that

Pr 1� uuu
H

1 Qwww(HHH)
2

<
�2(WWW )

4
= �(WWW ): (19)

Thus, by (19) and Theorem 1

G(WWW ) �EHHH [�1]
�2(WWW )

4
�(WWW )+(1��(WWW )) (20)

=EHHH [�1] 1+N
�(WWW )

2

2(M �1)
�2(WWW )

4
�1 : (21)

The bound in (20) was obtained by observing that there are two cases
of the channel corresponding to if the line generated byuuu1 is or is not
a member of a metric ball of one of the codebook lines. The line gener-
ated byuuu1 is in a metric ball with probability�(WWW ). When the line is
inside of a metric ball we know that1� juuuH1 Qwww(HHH)j2 < � (WWW )

4
, but

when the line is not in a metric ball we can only state the trivial bound
that1� juuuH1 Qwww(HHH)j2 � 1. These two cases and Theorem 1 then give
(21). In conclusion, minimizing (21) corresponds to maximizing the
minimum distance between any pair of lines spanned by the codebook
vectors. Thus, we propose the following criterion for designing quan-
tized beamforming codebooks.

Grassmannian Beamforming Criterion:Design the set of codebook
vectorsfwwwigNi=1 such that the corresponding codebook matrixWWW max-
imizes

�(WWW ) = min
1�k<l�N

1� jwwwH
k
wwwlj2:

This criterion captures the essential point about quantized beam-
forming codebook design for Rayleigh-fading MIMO wireless sys-
tems:Grassmannian line packingsare the key to codebook construc-
tion. Thus, beamforming codebooks can be designed without regard to
the number of receive antennas by thinking of the codebook as an op-
timal packing of lines instead of a set of points on the complex unit
sphere.

Onebenefitofmakingtheconnectionbetweencodebookconstruction
andGrassmannian linepacking is that itprovidesanapproach for finding
good codebooks, namely, leveraging work that has already been done
on finding optimal line packings. In the real case, this problem has been
thoroughly studied and the best known packings are cataloged at [37].
For thecomplexcase, thesingle-antennanoncoherentcodes in [44]often
have large minimum distances (see the discussion in [22]). Other times it
ispossible to findcodebooksusinganalytical [39]ornumerical [36], [40]
methods. Some example codebooks are given in Appendix A in Tables
I–V. Notice that whenN �Mt maximally spaced packings are trivial:
simply takeN columns of anyMt �Mt unitary matrix. It follows that
selection diversity represents a special form of quantized beamformer
designed using theGrassmannian beamforming criterion.

Another advantage of the connection to Grassmannian line packing is
that the bounds in Theorems 2 and 3 and the Rankin bound can be used
to judge the quality of any given codebook. For example, for a givenMt

andN � Mt, the Rankin bound gives a firm upper bound on�(WWW ).
Unfortunately, in most cases, the Rankin bound is not attainable and in
effect quite loose [39]. The Hamming bound given in Theorem 2 can be
useful for largeN but is looser than theRankinbound forsmallN .These
bounds will be of further use in Section V for determining rules of thumb
on the selection ofN to meet specific performance requirements.

A QMRT codebook designed according to theGrassmannian beam-
forming criterionuses a codebook matrixWWW given by

WWW = arg max
XXX2U

�(XXX): (22)
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Practical considerations such as hardware complexity often motivate
imposing additional constraints on the elements of the codebook. The
Grassmannian beamforming criterionis still applicable to the design
of these constrained codebooks. Solving for the optimum beamforming
vector, however, requires restricting the line packing matrixWWW to be
an element of a class of constrained beamforming vectorsVNM where
VNM � UNM .

One popular constraint, as discussed in Section II, is to impose the
requirement that every coefficient ofWWW have the same constant mod-
ulus. In these QEGT systems [17], [20]

VNM = VVV 2 UNM : 8 k; l; jV[k; l]j = 1p
Mt

:

A Grassmannian beamforming QEGT codebook is then designed by
solving

WWW = arg max
XXX2V

�(XXX): (23)

Numerical optimization techniques (such as those in [40]) are often
ineffective in designing QEGT codebooks. For this reason, random
search based designs often yield codebooks with the best minimum
distance. Suboptimal methods for designing QEGT codebooks were
proposed in [17], [20] but often perform worse than QEGT codebooks
designed using (23) (seeQEGT Experimentin Section VI for an ex-
ample). Other QEGT codebooks are available from the codebooks de-
signed from the noncoherent codes in [44]. As stated earlier, the code-
books in [44] are often optimal or near optimal even for the uncon-
strained QMRT case. Therefore,there is often no difference in perfor-
mance between QMRT and QEGT when using codebooks designed with
the Grassmannian beamforming criterion.

Another constraint of interest is to use only antenna combinations
that transmit on subsets of antennas. This corresponds to using beam-
forming vectors that pick a number1 � M � Mt and then select the
bestM antennas to transmit on. Thus, we choose one of the nonempty
members of the power set off1; . . . ; Mtg and transmit on this an-
tenna subset. Generalized subset selection, as we call this transmission
method, is a discrete system that can be represented via anMt-bit code-
book. IfMt is large, we might wish to use fewer thanMt bits for our
generalized subset selection system. In this case, we would pick the
codebook matrixWWW that satisfies

WWW = arg max
XXX2I

�(XXX) (24)

whereINM is given by the set of matrices inUNM where each column
can be represented as the normalized sum of unique column vectors
of IIIM . SinceINM has finite cardinality, the global maximum to (24)
can be obtained by performing a brute-force search over all matrices in
INM . GSS codebooks provide better performance than selection diver-
sity because additional vectors are included to allow a better quantiza-
tion of the optimal beamforming vector.

V. BOUNDS ONCODEBOOK SIZE

Codebook size naturally has an impact on the performance of a
quantized beamforming system. To obtain a good approximation of
the optimal beamforming vector, it is desirable to chooseN large. On
the other hand, minimizing the required feedback motivates choosing
N small. In this section, we derive the minimum value ofN required
to achieve full diversity order with codebooks designed using the
Grassmannian beamforming criterion.We also find approximate
lower bounds onN given an acceptable loss in capacity or SNR due
to quantization. These bounds function similarly to the Gilbert-Var-

shamov bound in Theorem 3 using an approximation to the Rankin
bound as the minimum distance.

A. Diversity Order

Closed-form results on the average probability of symbol error for
quantized beamforming and combining systems are difficult if not im-
possible to determine. Therefore, we use the diversity order perfor-
mance metric defined in Section II which is indicative of the high-SNR
performance of various linear modulation schemes. The following the-
orem, proved in Appendix B, determines a bound onN that guarantees
a diversity order ofMrMt for codebooks designed according to the
Grassmannian beamforming criterionin Section IV assuming MRC
at the receiver. The trick in proving the theorem is to recognize that
the codebook matrix resulting from theGrassmannian beamforming
criterion is guaranteed to be full rank. This full rank assumption can
be trivially satisfied if a rank degenerate codebook with aK-dimen-
sional null space is designed forN � Mt by replacing theK vectors
in the codebook that can be written as linear combinations of the other
(N�K) vectors with theK orthogonal vectors that span the null space
(see Lemma 3).

Theorem 4: If N � Mt, then theGrassmannian beamforming cri-
terion yields QMRT, QEGT, and GSS codebooks that have full diver-
sity order.

Equality in Theorem 4 is achieved whenN = Mt. In this case, the
codebook matrix is simply a unitary matrix (i.e.,WWWH

WWW = IIIM ) and,
thus, the codebook is any set of orthonormal vectors. Unfortunately,
it can be readily shown (using the unitary invariance of the Gaussian
distribution) that this is equivalent to selection diversity. While such
codebooks provably obtain full diversity order, choosingN > Mt will
more closely approximate the optimal MRT solution and result in a
larger array gain.

B. Capacity

The capacity loss associated with using quantized beamforming is
an important indicator of the quality of the quantization method. To
determine this loss, we compare the capacity assuming perfect beam-
forming with the capacity assuming the use of quantized beamforming.
Using this difference we derive a criterion for choosingN based on an
acceptable capacity loss.

Consider the system equation in (1) with the scalar effective channel
produced by beamformingzzzHHHHwww (recall thatwww andzzz are unit norm).
With MRT, the ergodic capacity of this scalar fading channel is given
by

Cunquant = EHHH log2 1 +
�1Et
N0

(25)

where�1 is the maximum eigenvalue ofHHHH
HHH while with quantization

it is given by

Cquant = EHHH log2 1 +
kHHHQwww(HHH)k22Et

N0
: (26)

Notice that we are computing the ergodic capacity of the equivalent
fading channel and we are not attempting to fully optimize over the
input distribution given partial channel information as in [24].

To compute a rule of thumb for choosingN based on a desired ca-
pacity loss, we approximate the quantized and unquantized capacity as

Cquant �EHHH log2
kHHHQwww(HHH)k22Et

N0
(27)

and

Cunquant �EHHH log2
�1Et
N0

: (28)
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Fig. 2. Capacity comparison of unquantized beamforming with three Grassmannian beamforming schemes for a4� 2 system.

The capacity loss due to quantization for high SNR (using the tech-
niques that bounded distortion) is given by

Closs =EHHH log2 1 +
�1Et
N0

� EHHH log2 1 +
kHHHQwww(HHH)k22Et

N0

�EHHH log2 1 +
�1Et
N0

� EHHH log2 1 +
�1Et
N0

juuu1Qwww(HHH)j2 (29)

�Cunquant 1�N
�(WWW )

2

2(M �1)

�N
�(WWW )

2

2(M �1)

log2 1�
�(WWW )

2

2

(30)

�Cunquant 1�N
�(WWW )

2

2(M �1)

: (31)

The result in (29) follows from zeroing the other channel singular
values, and (30) results from using the minimum-distance boundaries
of the metric balls and the high-SNR approximation toCunquant.
Therefore, an approximate bound on the normalized capacity loss
Closs = Closs=Cunquant is given by(1�N( �(WW

W )
2

)2(M �1)).
Note that for the cases of largeN , the Rankin bound on�(WWW ) in

(8) in this case is approximately M �1
M

. Substituting for�(WWW ), we
obtain a selection criterion (rule of thumb) onN based on capacity loss.

Capacity Loss Criterion:Given an acceptable normalized capacity
lossCloss, chooseN such that

N 1� Closs
4Mt

Mt � 1

M �1

: (32)

Equivalently, the corresponding number of bits of feedback(b =
log2N) should be chosen to be

b log2 1� Closs + 2(Mt � 1) + (Mt � 1) log2
Mt

Mt � 1
:

The last term corresponds to at mostMt � 1 thus, at most3(Mt � 1)
bits of feedback or less are needed depending on the tolerable loss.

This bound is once again approximate, but it gives insight into the
feedback amount required. Fig. 2 provides further intuition by showing
a plot of the capacities for a4 � 2 systems using unquantized beam-
forming and three different types of Grassmannian beamforming sys-
tems: QMRT withN =64, QMRT withN =16, and selection diver-
sity. QMRT withN =64 provides approximately a 1.5-dB gain com-
pared to selection diversity and a 0.5-dB gain compared to QMRT with
N=16. This plot clearly shows the capacity benefit of increasingN .

C. SNR

Consider the expression for the normalized SNR lossG(WWW ) ob-
tained from (21)

G(WWW ) =
G(WWW )

EHHH [�1]

� 1 +N
�(WWW )

2

2(M �1)
�2(WWW )

4
� 1 : (33)

Just as an approximate bound forN is derived in Section V-B given an
acceptable capacity loss due to quantization, a criterion for choosing
N , based on an acceptable normalized SNR lossG follows from (33).
Substituting in the approximate Rankin bound of

�(WWW )
Mt � 1

Mt

we obtain the following approximate criterion.
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Fig. 3. Probability of symbol error for three transmit and three receive antenna systems using QMRT/MRC, SDT/MRC, and MRT/MRC.

SNR Criterion: Given an acceptable normalized SNR lossG,
chooseN such that

N
1�G

M �1
4M

M �1

1� M �1
4M

: (34)

Once again, this bound is only approximate because it uses the Rankin
bound approximation but yields intuition into the choice ofN .

Following the analysis in Section V-B, the corresponding approxi-
mate number of bits of feedback(b = log2N) should be chosen to be

b log2 1�G + 2(Mt � 1) + (Mt � 1) log2
Mt

Mt � 1

� log2 1�
Mt � 1

4Mt

: (35)

In (35), at most3(Mt� 1)� log2(1�
M �1
4M

) bits of feedback or less
are needed depending on the tolerable loss.

As an aside, we should point out thatEHHH [�1] can be expressed in a
closed-form integral expression using techniques from [15], [18], [45].
This is of particular interest if bounds onN were desired that were
a function of an SNR loss that was not normalized. In [18], [45], the
probability density function of the largest singular value of a central,
complex Wishart distribution is derived, while the cumulative distribu-
tion function is derived in [15]. These results can also be used to derive
integral expressions for the outage probability as a generalization of
results in [22].

VI. SIMULATIONS

We simulate three different quantized beamforming schemes:
quantized maximum ratio transmission, quantized equal gain trans-

mission, and generalized subset selection. All simulations used
binary phase-shift keying (BPSK) modulation and i.i.d. Rayleigh
fading (whereH[k; l] is distributed according toCN (0; 1)). The
average probability of symbol error is estimated using at least 1.5
million iterations per SNR point. Codebooks for the QEGT and
QMRT systems were designed based on the proposedGrassmannian
beamforming criterion.The codebooks were found using the optimal
constructions available in [39], [44]. GSS codebooks are globally
optimal since searching over all possible codebooks is feasible. All of
the simulations assume an MRC receiver.

QMRT Experiment 1:In the first experiment, anMr = Mt = 3
system with QMRT is simulated with two different quantizations and
the results shown in Fig. 3. The vectors in the 2–bit codebook are shown
in Table IV in Appendix A. The 6-bit codebook has a maximum abso-
lute correlation of0:9399. The simulated error-rate curve of an optimal
unquantized beamformer and the actual error-rate curve for a selection
diversity system are shown for comparison. Notice that QMRT pro-
vides a 0.2-dB gain over selection diversity for the same amount of
feedback. Using 6 bits instead of 2 bits of feedback provides around
a 0.9-dB gain. The system using 6 bits performs within 0.6 dB of the
optimal unquantized MRT system.

QMRT Experiment 2:In [24], vector quantization techniques
were used to design QMRT codebooks. In this experiment, we
compare a system using Grassmannian beamforming (i.e., quantized
beamforming using a codebook designed with theGrassmannian
beamforming criterion) with a system using a codebook designed
by the Lloyd algorithm. The Grassmannian beamforming codebook
is shown in Table III in Appendix A. Codebooks containing eight
vectors were designed for anMr = Mt = 2 system. The results are
shown in Fig. 4. This simulation provides additional evidence of the
validity of the proposed design criterion. Thus, we are able to design
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Fig. 4. Probability of symbol error for two transmit and two receive antenna systems using QMRT codebooks designed with the proposed criterion and with
vector quantization.

codebooks that perform just as well as the codebooks performed using
computationally complex vector quantization algorithms.

QEGT Experiment:In this experiment, two different methods of
QEGT codebook design are compared on a three transmit and three re-
ceive antenna system. The results are shown in Fig. 5. The new method
refers to codebooks constructed using theGrassmannian beamforming
criterion. The 3-bit new codebook has maximum absolute correlation
of 0:5774 and the 5-bit new codebook has maximum absolute correla-
tion of 0:8836. The old method refers to the codebook design method
outlined previously in [17], [20].

A 3-bit new design method QEGT codebook performs approx-
imately the same as a 5-bit old design method QEGT codebook.
Thus, we can use two fewer bits of feedback and actually maintain
the average symbol error rate performance by using Grassmannian
beamforming. Performance improves by 0.5 dB when changing from
3-bit new QEGT to 5-bit new QEGT. Thus, we can either gain 0.5 dB
and use the same amount of feedback or keep the same performance
and save 2 bits of feedback by using theGrassmannian beamforming
criterion.

Comparison Experiment:The final experiment, shown in Fig. 6,
compares GSS and QMRT codebooks for a four transmit and two re-
ceive antenna system. The 4-bit codebook has a maximum absolute cor-
relation of0:5817, while the 6-bit codebook has a maximum absolute
correlation of0:7973. A 4-bit QMRT system outperforms a 4-bit GSS
system by approximately 0.5 dB. This illustrates that even a substantial
restriction on the nature of the codebook does not severely impact per-
formance when designed using theGrassmannian beamforming crite-
rion. A 6-bit QMRT system has an array gain of approximately around
0.5 dB compared to a 4-bit QMRT system. This illustrates the bene-
fits of increasing the amount of quantization even when a significant
amount of quantization is already used.

VII. CONCLUSION AND FUTURE WORK

In this correspondence, we derived a codebook design criterion for
quantizing the transmit beamforming vectors in a MIMO wireless
communication system. By bounding the SNR degradation for a given
codebook size, we showed that the problem of designing beamformer
codebooks is equivalent to Grassmannian line packing, which is the
problem of maximally spacing lines in the Grassmann manifold. To
approximate the feedback requirements, we used the Rankin bound
along with several newly derived results for line packings such as a
closed-form density expression, the Hamming upper bound on the
minimum distance and codebook size, and the Gilbert–Varshamov
lower bound on the codebook size.

A point that we did not address in detail pertains to implementation.
Grassmannian beamforming will likely be implemented in a lookup
table format. When the channel is slowly varying, it may be possible to
reduce the necessary number of bits sent back by using some successive
refinement techniques based on channel correlation. One solution is
to have a series of codebooks for different values ofN that support
successive refinement along the lines of [46].

Another important point in a practical implementation is the effect of
feedback error and delay in the feedback link. We did not address this
issue in our work because we modeled the feedback link as error and
delay free. An extensive simulation and/or analytical study of beam-
former quantization such as that in [47] is needed. These effects will
play an important role in performance in deployed MIMO systems
using quantized beamforming.

Finally, one limitation of the work proposed here is that we consid-
ered only the transmission of a single data stream. It is well known,
however, that MIMO channels can increase capacity by supporting the
transmission of multiple data streams simultaneously ([1], [2], etc.). In
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Fig. 5. Comparison of probability of symbol error for three transmit and three receive antenna systems using QEGT/MRC with the old and new codebook designs.

Fig. 6. Comparison of probability of symbol error for four transmit and two receive antenna systems using QMRT/MRC and GSS/MRC.
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the general case with full channel knowledge at the transmitter, it is pos-
sible to transmit on multiple right singular vectors with the number of
vectors and the power on each vector being determined by the desired
optimization criterion. For example, the capacity-achieving solution is
determined by waterpouring on the channel’s nonzero singular values.
A natural extension of our approach would be to derive codebooks for
quantizing each of the singular vectors. While our Grassmannian code-
books could be used, they do not retain the orthogonality between the
quantized singular vectors. Constructing codebooks for simultaneously
quantizing multiple singular vectors is an interesting topic for future
work.

APPENDIX

A. Tables of Line Packings

Examples of the packings found for variousMt are given in Ta-
bles I–V. The codebooks were found using random searches or through
some of the constructions presented [39] depending on the choice of
parameters.

B. Proof of Theorem 4

Before proving Theorem 4, we need to prove the following lemma
that establishes thatWWW is full rank for codes designed according to the
Grassmannian beamforming criterion.

Lemma 3: If N �Mt thenWWW is full rank when designed using the
Grassmannian beamforming criterionfor QMRT, QEGT, or GSS.

Proof: Suppose thatN � Mt and all optimal maximum
minimum-distance packings are not full rank. LetWWW be an optimal
codebook matrix with aK-dimensional null space. Letwwwi ; wwwi ; . . . ;
wwwi be columns that form a basis for the column space of
WWW . Because the columns ofWWW do not span M , there exists an
orthonormal basisvvv1; vvv2; . . . ; vvvK for the null space. Then we can
construct a new, full rank codebook matrixXXX with �(WWW ) � �(XXX)
by settingxxxl = vvvl for l � K andxxxl = wwwi for K < l � N .
This is a contradiction. We can therefore trivially construct a full rank
codebook.

Now we prove Theorem 4. This proof holds for any quantized beam-
forming technique (not just Grassmannian beamforming) that uses a
codebook with at leastMt vectors and has a full rank codebook ma-
trix.

Proof: First consider the receive SNR,Et���r=N0. SinceEt and
N0 are assumed fixed, we only need to consider���r = jzzzHHHHwwwj2. It
has been shown for a fixed realization ofHHH that the vectorswww andzzz
that maximizejzzzHHHHwwwj are the left and right singular vectors ofHHH cor-
responding to the largest singular value ofHHH [14], [15]. This solution
has been shown to achieve a diversity order ofMrMt [13], [15]. Quan-
tized beamforming can perform only as well as the unquantized case,
therefore, the achievable diversity order with quantized beamforming
is upper-bounded byMrMt. To prove equality, we will now show that
MrMt is also the lower bound on the achievable diversity order.

For anN vector beamforming codebook system with MRC at the
receiver, the effective channel gain is given by

���r = max
1�i�N

kHHHwwwik
2
2: (36)

Because the columns of the codebook matrixWWW span M ; WWW can
be factored via a singular value decomposition (SVD) into the form
WWW = UUU1[DDD 000]UUU2 whereUUU1 is anMt �Mt unitary matrix,000 is an
Mt�(N�Mt) matrix of zeros,UUU2 is anN�N unitary matrix, andDDD
is a real diagonal matrix withD[1; 1]�D[2;2]� � � � �D[M ;M ]> 0:

TABLE I
TRIVIAL CODEBOOK GENERATED FORM = 2 AND N = 2 (1 BIT)

TABLE II
CODEBOOK GENERATED FORM = 2 andN = 4 (2 BITS)

TABLE III
CODEBOOK GENERATED FORM = 2 andN = 8 (3 BITS)

TABLE IV
CODEBOOK GENERATED FORM = 3 andN = 4 (2 BITS)

TABLE V
CODEBOOK GENERATED FORM = 3 andN = 8 (3 BITS)

By the invariance of complex normal random matrices [41],HHHUUUH
1 is

equivalent in distribution toHHH . Therefore,

���r
d
= ~���r = max

1�i�N
kHHHUUUH

1 wwwik
2
2: (37)

Now using matrix norm inequalities taken from [48], stated for the real
case but easily seen to extend to the complex case, we find that

~���r = max
1�i�N

kHHHUUUH
1 wwwik

2
2 (38)

�
1

Mr

kHHHUUUH
1 WWWk21: (39)

Using the SVD, (39) can be rewritten as

~���r �
1

Mr

kHHHUUUH
1 UUU1[DDD000]UUU2k

2
1

=
1

Mr

HHHDDD ~000 UUU2

2

1
(40)

where~000 is anMr � (N �Mt) matrix of zeros.
By the matrix submultiplicative property [48]

HHHDDD ~000 UUU2
1
kUUUH

2 k1 � HHHDDD ~000 UUU2UUU
H
2

1

= kHHHDDDk1:
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Then using an inequality property of the matrix one- and two-norm

kHHHDDDk1 � HHHDDD ~000 UUU2
1

p
NkUUUH

2 k2
=

p
N HHHDDD ~000 UUU2

1
(41)

or rather

HHHDDD ~000 UUU2

2

1
� 1

N
kHHHDDDk21: (42)

Applying this bound we find that

~�r � 1

NMr

kHHHDDD k21

� D
2
[M ;M ]

NMr

kHHHk21

� D
2
[M ;M ]

NMr

max
i; j

jH[i; j]j2: (43)

The lower bound on~�r is the effective channel gain of a system
which selects the largest gain channel from amongMrMt i.i.d. com-
plex Gaussian random variables withD[M ;M ] > 0. Diversity sys-
tems of this form have been shown to achieve anMrMt diversity order

[28], [49]. The scale factor of
D

NM
can simply be interpreted as a

loss of array gain but not affecting the asymptotic diversity slope.
Combining the lower and upper bounds on diversity order, we have

shown that at high SNR, quantized beamforming obtains a diversity
order ofMrMt. The guarantee of diversity order is an important per-
formance indicator for the quantized beamforming system. Note that
this proof also verifies the diversity results in [12], [13], [17].
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Rate–Diversity Tradeoff of Space–Time Codes With Fixed
Alphabet and Optimal Constructions for PSK Modulation
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Abstract—In this correspondence, we show that for any( )
space–time code having a fixed, finite signal constellation, there is a
tradeoff between the transmission rate and the transmit diversity gain
achieved by the code. The tradeoff is characterized by + 1,
where is the number of transmit antennas. When either binary
phase-shift keying (BPSK) or quaternary phase-shift keying (QPSK) is
used as the signal constellation, a systematic construction is presented to
achieve the maximum possible rate for every possible value of transmit
diversity gain.

Index Terms—Rate–diversity tradeoff, space–time codes.

I. INTRODUCTION

Consider a space–time coded system withQ transmit andP re-
ceive antennas. Under the quasi-static Rayleigh fading assumption, the
channel is fixed for a duration ofM symbol transmissions. In general,
we will assumeQ � M . LetA denote the signal alphabet (constel-
lation) andS � AQM be a space–time code. Each codeword in the
space–time code is thus a(Q�M) matrix.
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Given the signal constellationA, we follow [7] and define the rate
R of a (Q�M) space–time codeS by

R :=
1

M
logjAj jSj: (1)

Under this definition, a rate-one code corresponds to a space–time code
of sizejAjM , i.e., to a code which transmits on the average, one symbol
from the signal constellationA per time slot. We say that a space–time
codeS achieves diversity gainP� if the power-series expansion of the
maximum pairwise-error probability (PEP) can be expressed as [4], [7]

PEP= c�
�P� + o(��P�) (2)

where c is some constant independent of the signal-to-noise ratio
(SNR)�. The quantity� is termed thetransmit diversity gain[1], [7].
It is shown in [7], that from the point of view of PEP, a space–time
codeS achieves transmit diversity gain� if and only if for every
S1 6= S2 2 S , the difference matrix4S = S1 � S2 has rank at
least� over the field of complex numbers. In [4], Luet al.showed
that the transmit diversity gain equals� even when one replaces the
PEP criterion by either the codeword-error probability or else the
symbol-error probability.

In this correspondence, we first show that for a fixed, finite-signal
constellationA there is a tradeoff between the rateR and the transmit
diversity gain� of a space–time codeS . More specifically, given
transmit diversity gain�, the rateR is upper-bounded by

R � Q� � + 1:

If either binary phase-shift keying (BPSK) or quaternary phase-shift
keying (QPSK) is used as the signal constellation, i.e.,A = f�1g or
A = f�1; �p�1g, we give a systematic code construction having
rateR that achieves the upper boundR = Q � � + 1 for every1 �
� � Q and for anyQ andM with Q � M < 1.

It should be noted that there is a distinction between the problem con-
sidered here and the one treated in Zheng and Tse [9]. In [9], the authors
consider space–time codes which transmit at rates close to channel ca-
pacity, which calls for a signal alphabet that grows linearly with the
logarithm of the SNR, whereas, we deal here with the more common
situation of a fixed and finite-signal alphabet. There is also a difference
in the definition of rate, the authors of [9] define rate in bits per channel
use, i.e., they define the rateR0 via

R
0

:=
1

M
log2 jSj:

Consequently, the authors of [9] arrive at a different tradeoff between
rate and maximum-achievable diversity gain.

II. RATE–DIVERSITY TRADEOFF

We first show that when the signal constellation setA is finite,
there is a tradeoff between the rate and transmit diversity gain of the
space–time code.

Theorem 1: Given the desired transmit diversity gain� and signal
constellationA with jAj = a <1, the size of the space–time codeS
is upper-bounded by

jSj � a
M(Q��+1)

: (3)

Hence, the rateR has the upper bound

R � Q� � + 1: (4)

Proof: The difference matrix4S = S1 � S2 between two dis-
tinct matricesS1; S2 drawn fromS cannot have rank at least� if the
first Q � � + 1 rows of the two matricesS1; S2 are identical. It fol-
lows that the setS cannot have size larger thanjAjM(Q��+1). The
result follows.
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