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Multiple-Output Wireless Systems
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Abstract—Multiple-input multiple-output (MIMO) wireless
systems are of interest due to their ability to provide substantial
gains in capacity and quality. This paper proposes equal gain
transmission (EGT) to provide diversity advantage in MIMO
systems experiencing Rayleigh fading. The applications of EGT
with selection diversity combining, equal gain combining, and
maximum ratio combining are addressed. It is proven that systems
using EGT with any of these combining schemes achieve full
diversity order when transmitting over a memoryless, flat-fading
Rayleigh matrix channel with independent entries. Since, in
practice, full channel knowledge at the transmitter is difficult to
realize, a quantized version of EGT is proposed. An algorithm to
construct a beamforming vector codebook that guarantees full
diversity order is presented. Monte–Carlo simulation comparisons
with various beamforming and combining systems illustrate the
performance as a function of quantization.

Index Terms—Diversity methods, equal gain transmission
(EGT), multiple-input multiple-output (MIMO) systems, Rayleigh
channels.

I. INTRODUCTION

A NTENNA diversity has been shown to improve mean
signal strength and reduce signal-level fluctuations in

fading channels [1]. These benefits are a direct result of the
fact that sufficiently spaced antennas encounter approximately
independent fading channels. Antenna diversity can be utilized
at the transmitter and/or receiver. Receive antenna diversity
systems intelligently combine the multiple received copies to
provide a higher average receive signal-to-noise ratio (SNR)
(see [2]–[4], and the references therein). Transmit antenna
diversity is more difficult to obtain, since it requires either
channel-dependent beamforming or channel-independent
space–time coding [5], [6].

Classical wireless research focused on the case where
antenna diversity was employed exclusively at either the
transmitter or receiver. When multiple antennas are only
available at the transmitter, beamforming techniques such as
selection diversity transmission (SDT), equal gain transmission

Paper approved by V. K. Bhargava, the Editor for Coding and Communica-
tion Theory of the IEEE Communications Society. Manuscript received March
11, 2002; revised December 24, 2002. This work was supported in part by
a Microelectronics and Computer Development Fellowship through The Uni-
versity of Texas at Austin, Austin, TX, in part by the Texas Advanced Re-
search (Technology) Program under Grant 003658-0614-2001, and in part by
the Samsung Institute of Applied Technology. This paper was presented in part
at the IEEE Global Telecommunications Conference, Taipei, Taiwan, R.O.C.,
November 17-21, 2002.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Texas at Austin, Austin, TX 78712 USA. (e-mail:
djlove@ece.utexas.edu; rheath@ece.utexas.edu).

Digital Object Identifier 10.1109/TCOMM.2003.814195

(EGT), and maximum ratio transmission (MRT) have been
used to exploit the diversity available from the multiple-input
single-output (MISO) wireless channel. On the other hand,
for systems with multiple antennas only at the receiver, com-
bining schemes such as selection diversity combining (SDC),
equal gain combining (EGC), and maximum ratio combining
(MRC) have been used to obtain diversity advantage from the
corresponding single-input multiple-output (SIMO) wireless
channel.

When antenna diversity is employed at both the transmitter
and receiver, the multiple-input multiple-output (MIMO)
channel encountered in the memoryless case is a matrix.
Beamforming and combining can be used in MIMO communi-
cation channels, however, the beamforming vector and receive
combining vector must now be jointly designed to maximize
the receive SNR. MIMO MRT and MRC were addressed in [7]
and shown to provide full diversity order. Systems using SDT
and MRC were studied in [8], and also shown to provide full
diversity order. Designing MIMO beamforming and combining
vectors is nontrivial, and in many cases, involves an optimiza-
tion problem that can not be easily solved in real-time systems.

EGT has more modest transmit amplifier requirements than
MRT, since it does not require the antenna amplifiers to modify
the amplitudes of the transmitted signals. This property allows
inexpensive amplifiers to be used at each antenna as long as
the gains are carefully matched. For example, SIMO EGC and
MISO EGT have already been considered as low-complexity al-
ternatives to MRC and MRT, respectively (see [2], [9]–[12] and
the references therein). Despite the importance of MIMO com-
munication systems, the application of EGT to these systems
has not yet been addressed.

In this paper we propose EGT, combined with either SDC,
EGC, or MRC at the receiver, to provide full diversity order in
MIMO wireless systems transmitting over memoryless, inde-
pendent and identically distributed (i.i.d.) Rayleigh fading chan-
nels. We jointly solve for the optimal beamforming and com-
bining vectors by maximizing the received SNR. For the cases
considered, it is possible to find the optimum combining vector
as a function of the beamforming vector; finding the optimum
beamforming vector usually requires a nonlinear optimization.
We prove that any beamforming and combining system whose
set of possible beamforming vectors contains a subset ofor-
thogonal vectors and whose set of possible receive combining
vectors contains a subset of orthogonal vectors, where
and are the number of transmit and receive antennas, respec-
tively, provides full diversity order. We use this proof to show
that MIMO systems using EGT combined with SDC, EGC, or
MRC obtain full diversity order.
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One problem encountered during implementation of MISO
and MIMO beamforming systems is that full channel knowledge
is required at the transmitter to design optimal beamforming
vectors. In many systems, such as those using frequency-divi-
sion duplexing, it is impossible to obtain complete channel in-
formation at the transmitter. One solution to this problem is to
let the receiver design the beamforming vector and then send the
vector to the transmitter [13], [14]. Since infinite resolution is
impossible, it is preferable to quantize the set of possible beam-
forming vectors into a codebook and then send only the code-
book entry of the desired beamforming vector. Quantized MRT
for MISO systems was addressed in [13], while MISO quan-
tized equal gain transmission (QEGT) was discussed in [14].
QEGT has also been chosen as one of the closed-loop beam-
forming techniques in wideband code-division multiple access
(W-CDMA) [15]. Due to the difficulty of finding the optimal
beamforming vector in beamforming and combining systems,
MIMO quantized beamforming represents a much more diffi-
cult problem than in MISO systems [23].

Since full channel knowledge is often not available at the
transmitter, we propose and study MIMO QEGT. We develop an
algorithm for QEGT codebook construction that guarantees full
diversity order for memoryless, i.i.d. Rayleigh fading channels,
given that a sufficient number of bits are allocated for feedback.
This minimum number of bits depends directly on the number
of transmit antennas. We show that when the number of bits
allocated for feedback is equal to , the beamforming
scheme performs, on average, identically to SDT. An important
side benefit of QEGT is that the optimal beamforming vector
can be found through a low-complexity brute-force search, as
opposed to a nonlinear optimization.

This paper is organized as follows. Section II reviews MIMO
communication with beamforming and combining. Basic
performance properties of MIMO beamforming and combining
systems are presented in Section III. We discuss EGT systems
with SDC, EGC, and MRC in Section IV. We propose MIMO
QEGT and provide a full-diversity codebook design method
in Section V. In Section VI, we show simulation results that
verify the performance analysis of EGT and QEGT systems.
We provide some conclusions in Section VII.

II. SYSTEM OVERVIEW

A MIMO system using beamforming and combining is illus-
trated in Fig. 1 with transmit antennas and receive an-
tennas. A symbol ( , the field of complex numbers) is
multiplied by weight at the th
transmit antenna. The signal received by the th

receive antenna is given by

(1)

where is a memoryless fading channel that is constant over
several channel uses and distributed according to , and

is a noise term distributed according to . We as-
sume that is independent of if or , and is
independent of if . Note that time dependence has been

Fig. 1. Block diagram of a MIMO beamforming and combining system.

abstracted from the discussions by assuming that the channel
is constant over several transmissions. The data received by the

th receive antenna, , is multiplied by ( with de-
noting conjugation). The weighted output of each of there-
ceive antennas is then combined to produce. This formulation
allows the equivalent system to be written in matrix form as

(2)

with , ,
, and denoting the matrix with

coordinate equal to where denotes transposition and
denotes conjugate transposition. We call the effective

channel. For optimum performance,and should be chosen
as a function of the channel to minimize the probability of error.

The nearest neighbor union bound on the symbol-detection
error probability can be stated [16] as

(3)

where is a real constant that is the average number of nearest
neighbors per symbol, is the minimum distance of the
transmit constellation normalized to unit energy,is the re-
ceive SNR, and is the Gaussian -function. Note that can
be adjusted in order to provide a close approximation to the ac-
tual probability of error [16]. Since the -function is a mono-
tonically decreasing function and is assumed fixed, mini-
mizing the bound requires that we maximize the SNR. It follows
from (2) that

(4)

where is the matrix two-norm, is the absolute value,
and is the transmitted symbol’s energy. Notice that (4) does
not vary with , therefore, without loss of generality we can
fix . We also can see that the transmitter transmits with
total energy . Therefore, due to power constraints at the
transmitter, we can take . With these assumptions, the
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instantaneous receive SNR, can be expressed as

(5)

where is the effective channel gain.
Maximizing is a multidimensional optimization problem.

We will, therefore, employ standard linear programming termi-
nology in dealing with the maximization. Recall that the set over
which a cost function is optimized is called thefeasible set[17].
We will denote the set of all possible beamforming vectors as the
beamforming feasible set and the set of all possible combining
vectors as the combining feasible set.

The beamforming feasible set defines the set over which the
beamforming vector is chosen. Whencan be any unit vector,
the beamforming scheme is called MRT. A beamforming
scheme where each transmit antennahas weight with

is denoted by EGT. If is constrained to be a
column of the identity matrix, the beamforming
scheme is called SDT.

In MIMO systems, the combining vectors need to be chosen
in addition to the beamforming vectors, perhaps under different
constraints. A receiver wherecan be any unit vector is using
MRC. An EGC receiver constrains each receive antenna weight

to have . A receiver where is a column of
is using SDC.

In this paper, EGT and EGC are considered. The
definition of EGT allows us to express as

,
where and . As well,
EGC vectors can be expressed as , where

and .
It is important to note that uniqueness is not guaranteed for

any beamforming and combining scheme. Multiplication of the
beamforming vector by and the combining vector by

with does not change . For this reason,
when optimizing a cost function, we will define
to return the set of global maximizers. We later exploit this
nonuniqueness to reduce the size of the solution set and thus,
the amount of feedback in the QEGT system.

These transmission and combining methods can be in-
termixed together to suit different system requirements. If
beamforming method A is used at the transmitter and com-
bining method B is used at the receiver, we will call this an
A/B system.

III. SYSTEM PERFORMANCE

Given no design constraints on the form ofor , the nearest-
neighbor union bound tells us that the optimal solutions are the
beamforming vector and combining vector that maximize.
Since we assume thatand are fixed, this simplifies to max-
imizing the effective channel gain . Lemma 1gives a clear
upper bound on .

Lemma 1: The SNR is maximized when and are the
left and right singular vectors of , respectively, corresponding
to the largest singular value of with .

The proof ofLemma 1is given in [18]. Since MRT and MRC
pose no restrictions other than unit two-norm on the vectors

and , respectively, we can, therefore, conclude that for
any channel matrix , the effective channel gain of a useful
MRT/MRC system is . Lemma 1gives us an upper bound
on for EGT systems.

It is often difficult to compute meaningful, closed-form ex-
pressions for the average probability of symbol error (average
taken with respect to the channel [4]) even for much simpler
SIMO EGC systems [4], [10]–[12], [19]. We will, therefore, in-
stead use the metrics of diversity order and array gain [1]. A
system is said to have array gainand diversity order if the
average probability of symbol error is inversely proportional to

for .
Lemma 2: Let be the effective channel gains and

be the diversity orders for two different MIMO beam-
forming and combining systems. If for all then

.
Proof: The nearest-neighbor upper bound tells us that for

large , the probability of symbol error is a decreasing
function of the effective channel gain. Therefore, if
for any channel , then the average probability of symbol error
for Scheme 1 will always be less than the average probability
of symbol error for Scheme 2. Thus, there does not exist a

such that the average probabilities of symbol error
are equivalent. We can, therefore, conclude that .

An important corollary that we will use later in upper
bounding the diversity order of MIMO EGT systems follows
from this lemma.

Corollary 1: For any wireless systems using beam-
forming and combining, the diversity order is always less than
or equal to when transmitting over a memoryless, i.i.d.
Rayleigh fading matrix channel.

Proof: By Lemma 1, the effective channel gain of
MRT/MRC systems, which are known to have diversity order

(see [7] and [20]), will be greater than or equal to the
effective channel gain of any other beamforming and
combining system. Therefore, byLemma 2, for any
wirelesssystemusingbeamformingandcombining, thediversity
order is always less than or equal to when transmitting
over a memoryless, i.i.d. Rayleigh fading matrix channel.

In our diversity advantage proofs we will also lower bound
the diversity order. The following lemma provides an important
result in the theory of beamforming and combining wireless sys-
tems transmitting over i.i.d. Rayleigh fading MIMO channels.

Lemma 3: If the beamforming feasible set and combining
feasible set of an beamforming and combining system
contain and orthogonal vectors, respectively, then the
system has a diversity order of when transmitting over
memoryless, i.i.d. MIMO Rayleigh fading channels.

Proof: Let A/B denote a beamforming and combining
method satisfying the orthogonality conditions.Corollary 1
tells us that the diversity order is upper bounded by .
Let be an matrix whose columns are the
orthogonal beamforming vectors, and be an
matrix whose columns are the orthogonal combining
vectors. Let be the effective channel gain for a beam-
forming and combining system that uses only the columns
of as beamforming vectors and the columns of as
combining vectors. The orthogonality of the columns and the
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unit two-norm requirement allow us to write that
and meaning that and are both unitary.

Let denote the effective channel gain of the original
system. Since the columns of are contained in the beam-
forming feasible set of the original system, and the columns of

are contained in the combining feasible set of the original
system, we can conclude that for any channel re-
alization . Therefore, the diversity order of the original system
is greater than or equal to the diversity order of the restricted or-
thogonal system.

For any channel realization we have that

(6)

with denoting the th column of , and
denoting the entry of . We assumed that
was a complex normally distributed random matrix whose en-
tries were all independent. By the invariance of complex normal
random matrices to unitary transformation [21],is equivalent
in distribution to . Therefore

(7)

with denoting equivalence in distribution.
The distribution equivalent system defined in (7) is the one

that chooses the pair of antennas with the largest gain channel.
This is a selection diversity transmission and combining system.
These systems are known to provide a diversity order of
[3], [22].

We have now upper and lower bounded the diversity order of
the A/B system by . We can conclude that any system
using a beamforming feasible set and combining feasible set
with and orthogonal vectors, respectively, has a diversity
of order .

IV. EQUAL GAIN TRANSMISSION(EGT)

In this section, we will consider EGT in conjunction with
SDC, EGC, and MRC. We will address the design of the beam-
forming vectors and the diversity performance for each of the
combining schemes.

A. EGT/SDC

It is often convenient to employ SDC at the receiver because
of its low-complexity implementation. A multiantenna receiver
using SDC requires only a switch that can choose between
different antenna outputs and a single radio chain. SDC is also
the only combining scheme where a general expression for the
optimal EGT vector can be derived.

As discussed in Section II, we wish to chooseand in
order to maximize . When SDC is employed at
the receiver, is one of the columns of . Therefore

(8)

where is the th entry of the vector .

Substituting the expression into (8), we
find that

(9)

Notice that is bounded by

(10)

where is the matrix sup-norm.
The sup-norm can be rewritten in terms of the rows

as , where
is the one-norm and is the transpose of the

th row of . Therefore, the bound in (10) is achiev-
able by letting , where

, , and the
function returns the phase of each
entry of a vector.

We now have an expression for the optimal EGT vector when
SDC is employed. In this case, with an arbitrary

with

(11)

With this beamformer, the receive SNR is

(12)

UsingLemma 3, we can also comment on diversity order.
Theorem 1: The diversity order of a MIMO system using

EGT and SDC is when transmitting over memoryless,
i.i.d. MIMO Rayleigh fading channels.

Proof: Let be the point discrete Fourier
transform (DFT) matrix where entry of is given by

. By our definition, so is
unitary. The columns of are all acceptable EGT vectors, so
the beamforming feasible set contains orthogonal vectors.
The receive combiner uses the columns of as a feasible
set, thus, it contains orthogonal vectors by definition. By
Lemma 3, the EGT/SDC system has a diversity order of .

B. EGT/EGC

While SDC is easily implemented, EGC receivers have been
shown to improve the average probability of symbol-error
performance [4]. EGCs require only moderate hardware
complexity, because each of the receive antennas weights is
restricted to have magnitude .
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The gain of the effective channel for an EGT/EGC system can
be bounded by

(13)

where the inequality follows from the equal-gain prop-
erties of . The bound in (13) is achievable when

, where is an arbitrary
phase angle.

Using the optimal EGC vector, . This

can be rewritten for EGT as .
Therefore, the optimal phase vectoris given by

(14)

The optimization problem defined by (14) has no known
simple, closed-form solution. Again, note that the solu-
tion defined by (14) also does not have a unique solution.
In fact, if is an optimal EGT vector, then

is also optimal for any because

.
Theorem 2: A MIMO system using EGT and EGC achieves

a diversity order of when transmitting over memoryless,
i.i.d. MIMO Rayleigh fading channels.

Proof: We have shown in the proof ofTheorem 1that the
EGT feasible set contains a set of orthogonal vectors. Simi-
larly, let be the unitary DFT matrix. Each column
of is a possible EGC vector. Thus, the combining feasible set
contains a set of orthogonal vectors.Lemma 3tells us that
an EGT/EGC system has a diversity order of .

C. EGT/MRC

MRC provides the best performance among all combining
schemes, thanks to the absence of constraints placed on the set of
possible combining vectors. The combining vector is designed
specifically to maximize the effective channel gain .

For EGT/MRC systems, the effective channel gain can be
upper bounded by

(15)

The upper bound in (15) is achievable if .
Thus, the optimum phase vectorsolves

(16)

Once again, the phase vectoris not unique, because can
be arbitrarily multiplied by any unit gain of the form with

.

Theorem 3: A MIMO system using EGT and MRC has a di-
versity on the order of when transmitting over memory-
less, i.i.d. MIMO Rayleigh fading channels.

Proof: We have already shown in the proof ofTheorem
1 that the EGT feasible set contains orthogonal vectors.
Note that each column of is a possible MRC vector. There-
fore, the MRC feasible set contains orthogonal vectors. By
Lemma 3, an EGT/MRC system has a diversity of order .

V. QUANTIZED EQUAL GAIN TRANSMISSION(QEGT)

In real-world systems, EGT is not an implementable solu-
tion for two main reasons, complexity and overhead. First, note
that the optimization problems in (14) and (16) do not have
closed-form solutions for arbitrary and . Implementa-
tion requires an iterative method, costing precious clock cycles.
Convergence of such an iterative method to the global maximum
is not guaranteed. Second, due to a limited feedback channel in
most systems, it is impossible to send back high-precision phase
angles. Wireless systems must always limit control data over-
head in order to achieve large user data rates. If high-resolution
phase angles were sent to the transmitter, this control overhead
would overwhelm the limited feedback capacity.

One solution is to quantize the set of possible, creating a
system called QEGT. This quantizes the space of beamforming
vectors and eliminates the problem of finding the global max-
imum by using a brute-force search. As we show, the quantiza-
tion can be quite low, reducing feedback requirements, without
much performance sacrifice.

Suppose that bits of quantization are used for each phase.
Complete phase vector quantization would require bits of
overhead. However, from (11), (14), and (16), a term of
can always be factored out without loss of generality. Thus,
can be written in the form .
Therefore, if bits are used for each phase angle within, then
only bits are necessary to define antenna
gains. Thus, by taking into account the nonuniqueness of the
beamforming vector, we have reduced the amount of feedback.

Let be the codebook, or set, of all possible QEGT vectors.
For bits of quantization, , with
denoting cardinality. A brute-force search through the possible
vectors can be used to solve either (11), (14), or (16). We must
now turn our attention to the design of the vectors within.

A quantization scheme that does not maintain full diversity
order is wasting valuable resources by not making use of the
full independently fading channels arising from the mul-
tiantenna system. Therefore, when using QEGT, it is imperative
to maintain full diversity order for small . To proceed with the
codebook design, note that the proofs ofTheorems 1, 2,and3
employ the unitary DFT matrix. If our codebook al-
ways contains the columns of the DFT matrix, then
we are guaranteed byLemma 3to have full diversity order for
SDC, EGC, and MRC. Therefore, if and
denotes the unitary DFT matrix, we will require that
for all there exists such that .

By construction, the beamforming codebookwill alwayscon-
tain the columns of the unitary DFT matrix when
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. We can conclude fromLemma 3
that quantized systems such as QEGT/SDC, QEGT/EGC, and
QEGT/MRC obtain a diversity advantage of order if

.
The proposed algorithm uses a set made up of the column

vectors of the DFT matrix truncated to rows
and scaled by , where is an integer that satisfies

. Since divides the set will con-
tain the set of column vectors of the unitary DFT
matrix. The codebook then chooses vectors
from with denoting set difference, that minimize an
absolute correlation requirement and adds them to

can then be used as a full-diversity transmitter codebook.
The algorithm is given in its entirety below.

1. Fix a constant such that .
2. Construct a matrix where consists
of the first rows of the uni-
tary DFT matrix. Scale this matrix by
to guarantee unit vector columns.
3. Construct a set of vectors where
the members of are the columns of .
4. Let the set be the columns of the

unitary DFT matrix.
5. Choose the vector such that

, where is defined
as

(17)

Set .
6. Repeat 5 until .

The intuition behind this algorithm is to begin with a
codebook of only orthogonal vectors, and then add vectors
one-by-one to this codebook, such that the vector added at each
step is “distant” from the current codevectors. We have shown
in Section III that for any the beamforming vectors

and provide the same receive SNR. We will, therefore,
try to maximize the phase-invariant distancebetween any
two vectors defined by

(18)
where and are unit vectors. Thus, returns the ab-
solute correlation corresponding to the phase-invariant distance
of the closest vector in to [21].

Two points are imperative to note about this algorithm. First,
as grows large, approaches an optimal equal gain code-
book in terms of the cost function. Second, asincreases, it
is possible to approach a true EGT system, since for any phase
vector entry , can be chosen, given and such that
the error of goes to zero as (and thus,

) grows large. This shows that QEGT can perform arbitrarily
close to EGT.

Selecting an optimal requires making tradeoffs between
the amount of tolerable feedback and array gain. As a rule of

Fig. 2. Average probability of symbol error for 2�2 systems using
QEGT/EGC with various weight quantizations, EGT/EGC, SDT/SDC, and
MRT/MRC.

thumb, we have found that QEGT using a total feedback of at
least bits, or rather provides perfor-
mance almost identical to unquantized EGT. Notice that when

, . In this case, the
beamforming feasible set will contain exactly orthogonal
vectors. The following observation gives an exact performance
analysis for this case.

Observation: If , the system is
equivalent in distribution to an SDT system with the same com-
bining scheme.

The proof of this follows easily from the distribution invari-
ance of memoryless, i.i.d. Rayleigh fading matrices to multipli-
cation by unitary matrices. The implication of this observation
is that when , our algorithm becomes
a modified selection diversity beamformer. The only difference
is that the beamforming vectors have been “rotated” by the uni-
tary DFT matrix.

VI. SIMULATIONS

For this section, we simulated the average probability of
symbol error with various antenna configurations and beam-
forming schemes. All simulations used i.i.d. Rayleigh fading
with distributed according to . Monte–Carlo
simulations ran over 1.5 million iterations per SNR point.

Experiment 1: We considered an
MIMO QEGT/EGC system with various values of and

, so was the empty set at the con-
clusion of the algorithm. Unquantized EGT/EGC, SDT/MRC,
SDT/SDC, and MRT/MRC systems were also simulated. Each
simulated system used binary phase-shift keying (BPSK)
modulation. Fig. 2 shows the results from this experiment.
Notice that all the quantized curves have a diversity order of
four. The array gain between one and two bits of quantization
is approximately 0.6 dB. However, the array gain between
two and three bits of quantization is only about 0.08 dB. This
is indicative that QEGT approaches EGT performance as
increases.
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Fig. 3. Average probability of symbol error for 2�2 systems using
QEGT/MRC with various weight quantizations, EGT/MRC, SDT/MRC, and
MRT/MRC.

Experiment 2: This experiment considered
beamforming and combining systems using QEGT/MRC with
various values of unquantized EGT/MRC, SDT/MRC, and
MRT/MRC. All simulations used BPSK modulation. Fig. 3
shows the performance. It is important to note that for ,
the average symbol-error rate (SER) curve for a QEGT/MRC
system is on top of the average SER curve for an SDT/MRC
system. This verifies the observation presented for this special
case. We took once again. The array gain
between one and two bits of quantization is approximately 0.6
dB. Once again, the gain of around 0.05 dB between two and
three bits quantization is much smaller. The diversity order is
seen to be four, as expected.

Experiment 3: In the third experiment, we took ,
, and transmitted BPSK symbols. We considered

QEGT/EGC and QEGT/MRC with , which provide a
close approximation to EGT/EGC and EGT/MRC performance,
respectively. Here, was taken to be . SDT/SDC,
SDT/MRC, and MRT/MRC were also simulated. The results
are shown in Fig. 4. This plot shows that using MRC instead
of EGC at the receiver with EGT gives around a 0.8 dB gain.
The diversity order for all of the curves is seen to be six, as one
would expect.

Experiment 4: This experiment used
with BPSK. The results are shown in Fig. 5. We considered
QEGT/EGC and QEGT/MRC with , which again provide
a close approximation to EGT/EGC and EGT/MRC perfor-
mance, respectively. SDT/SDC, SDT/MRC, and MRT/MRC
were simulated for comparison. Here, we took . This
value of led to a nonempty when the algorithm was
completed. The array gain difference between receive MRC
and EGC with EGT is around 0.6 dB. The diversity order for
all of the plotted curves is nine.

Experiment 5: This experiment shows that the performance
of QEGT systems is independent of the modulation scheme.
Fig. 6 shows the average SER for an MRT/MRC system
using four-point quadrature amplitude modulation (4-QAM), a

Fig. 4. Average probability of symbol error for 2�3 systems using
QEGT/EGC with four bits of feedback per weight, QEGT/MRC with four bits
of feedback per weight, SDT/SDC, SDT/MRC, and MRT/MRC.

Fig. 5. Average probability of symbol error for 3�3 systems using
QEGT/EGC with four bits of feedback per weight, QEGT/MRC with four bits
of feedback per weight, SDT/SDC, SDT/MRC, and MRT/MRC.

QEGT/MRC system with using 4-QAM, an MRT/MRC
system using 16-QAM, and a QEGT/MRC system with
using 16-QAM. We used . All systems used
and . For both modulation schemes, the MRT/MRC
system has an array gain of approximately 0.4 dB over the
QEGT/MRC system.

Experiment 6: This experiment illustrates the benefits of em-
ploying transmitand receive antenna diversity over simply re-
ceive diversity. In Fig. 7, the average SER curves are shown
for an and EGC system, an and

QEGT/EGC system with and
and an and EGC system. Each simula-
tion used 4-QAM. The 24 QEGT/EGC system outperforms
the 1 4 EGC system by approximately 3.4 dB at an error rate
of 10 . The 2 4 QEGT/EGC system also provides eighth-
order diversity compared with fourth-order diversity of the 14
EGC system. Thus, adding another transmit antenna provides
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Fig. 6. Bound and average probability of symbol error for a 2�4 QEGT/MRC
system with three bits of feedback per weight with various modulations.

Fig. 7. Average probability of symbol error for a 2�4 QEGT/EGC system
with three bits of feedback per weight, a 1�4 receive EGC system, and a 1�8
receive EGC system.

substantial performance gains. The 18 EGC system also pro-
vides eighth-order diversity and provides approximately a 1.5
dB array gain over the 24 QEGT/EGC system. This perfor-
mance increase comes at greater cost, because the 18 system
requires three more antennas than the 24 system.

VII. CONCLUSION

In this paper, we examined EGT for MIMO wireless systems
operating in memoryless, MIMO Rayleigh fading channels. We
specifically examined the design and performance of EGT when
used with receive SDC, EGC, or MRC. We showed that in each
of these cases, the beamforming and combining system obtains
full diversity order. We proposed a quantized version of EGT for
systems without transmitter channel knowledge. We presented
a codebook design method for QEGT that guarantees full diver-
sity order.

The primary performance limitation of QEGT derives from
the equal gain assumption. In other work [21], [22] we show
that quantized MRT provides further performance improvement
at the expense of a signal peak-to-average ratio increase. A thor-
ough probabilistic analysis of Rayleigh fading MIMO chan-
nels is needed in order to understand the performance of quan-
tized beamforming systems [21], [22]. Another point of future
interest is the derivation of exact expressions for the average
probability of error for MIMO equal gain systems. Many pa-
pers have derived closed-form probability of error expressions
for the SIMO equal gain case [4], [10]–[12], [19], but there has
been little work on deriving exact probability of error expres-
sions for MIMO EGT systems.
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