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Multimode Antenna Selection for Spatial
Multiplexing Systems With Linear Receivers

Robert W. Heath, Jr., Member, IEEE, and David J. Love, Member, IEEE

Abstract—Spatial multiplexing is a simple transmission tech-
nique for multiple-input multiple-output (MIMO) wireless
communication links in which data is multiplexed across the
transmit antennas. In Rayleigh fading matrix channels, however,
spatial multiplexing with low-complexity linear receivers suffers
due to a lack of diversity advantage. This paper proposes multi-
mode antenna selection, which uses a low-rate feedback channel
to improve the error rate performance of spatial multiplexing
systems with linear receivers. In the proposed technique, both
the number of substreams and the mapping of substreams to
antennas are dynamically adjusted, for a fixed total data rate,
to the channel based on limited feedback from the receiver.
Dual-mode selection, where spatial multiplexing or selection
diversity is adaptively chosen, dramatically improves the diversity
gain achieved. Multimode selection (i.e., allowing any number of
substreams to be dynamically selected) provides additional array
gain. Various criteria for selecting the number of substreams
and the optimal mapping of substreams to transmit antennas are
derived. Relationships are made between the selection criteria
and the eigenmodes of the channel. A probabilistic analysis of
the selection criteria are provided for Rayleigh fading channels.
Applications to nonlinear receivers are mentioned. Monte Carlo
simulations demonstrate significant performance improvements in
independent and identically distributed (i.i.d.) flat-fading Rayleigh
matrix channels with minimal feedback.

Index Terms—Antenna selection, diversity methods, MIMO sys-
tems.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) wireless
communication channels, which are created through the

use of arrays of transmit and receive antennas, can be exploited
to improve capacity and reduce sensitivity to fading. One
simple approach for taking advantage of the capacity of the
MIMO wireless channel is spatial multiplexing, a component
of Bell Labs Space Time (BLAST) [1], where the incoming
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data is divided into multiple substreams, and each substream
is transmitted on a different transmit antenna [1], [2]. Given
perfect channel knowledge at the receiver, a variety of methods
including linear, successive, and maximum likelihood (ML)
decoding can be used to remove the effect of the channel and
reassemble the transmitted substreams [3]–[5].

Spatial multiplexing systems that use linear receivers, either
zero-forcing (ZF) or minimum mean squared error (MMSE), are
practically important due to their minimal complexity require-
ments. Unfortunately, in independent and identically distributed
(i.i.d.) MIMO Rayleigh fading channels, the use of a linear re-
ceiver incurs a significant penalty: loss of diversity advantage
relative to the ML receiver. In a system with transmit an-
tennas and receive antennas, ZF receivers obtain a diversity
gain on the order of [5], whereas the diversity
gain with ML receivers is [3]. Although ML receivers do
improve performance, they do not achieve the full pos-
sible through more sophisticated space-time coding (see, e.g.,
[6]).

Contributions: In this paper, we propose to use a low-rate
feedback channel to add a diversity mode to spatial multiplexing
systems with linear receivers. The key innovation in our system
is to allow both the number of substreams transmitted and the
mapping of substreams to a subset of transmit antennas to be dy-
namically controlled based on feedback from the receiver. We
assume that the overall data rate remains the same, regardless of
the number of substreams; thus, the sole purpose of the feedback
is to indicate the substream and antenna combination that pro-
vides the minimum error rate for the given data rate. Our work
generalizes prior work on transmit antenna selection for MIMO
systems with linear receivers [7], [8] by offering substantially
more diversity advantage at the expense of additional feedback.
In prior work, the number of transmitted substreams was fixed,
and only the optimum subset among all possible transmit an-
tennas was chosen. The diversity improvement was thus lim-
ited by the difference between the number of transmit antennas
and the number of substreams. In contrast, by allowing both
the number of substreams transmitted and the mapping of sub-
streams to a subset of antennas, with optimal selection, we argue
that it is possible to obtain a diversity advantage proportional to
the product of the number of transmit and receive antennas. Fur-
ther, the feedback requirements are surprisingly minimal—only

(the number of transmit antennas) bits per matrix channel.
We consider two important cases that we call dual-mode

antenna selection and multimode antenna selection. In the
dual-mode case, we allow either spatial multiplexing with all
the transmit antennas or selection diversity with transmission
from the single best transmit antenna. Because of the fixed
rate assumption, in the later case, the constellation transmitted
on a single antenna is much larger than when all the antennas
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are used. Essentially, this allows us to trade off between
multiplexing and diversity based on instantaneous channel in-
formation, similar to the approach in [9] and [10]. We propose
various criteria for selecting the optimum subset in flat-fading
matrix channels, assuming a zero-delay and error-free feedback
path. Based on Euclidean distance arguments, we show that the
choice of diversity or multiplexing can be made as a function
of the condition number of the channel and the minimum
Euclidean distance of the constellations. Using this result, we
study the probability of selecting multiplexing versus diversity,
as a function of the number of antennas and the rate, for MIMO
Rayleigh fading channels using the distribution of the condition
number. We then generalize our results to the case of multi-
mode selection, where all possible numbers of substreams and
subsets of the transmit antennas are allowed. We derive various
suboptimal selection criteria, and we show that the multimode
approach provides a smoother way to trade off between diver-
sity and multiplexing. Compared with dual-mode selection,
this approach achieves the same diversity gain but more array
gain due to improved coupling of the transmitted signal into
the channel. The probability of selecting a given number of
antennas is presented and evaluated numerically. We also show
that dual-mode and multimode antenna selection can be used
with nonlinear receivers such as the Vertical-Bell Labs Space
Time (V-BLAST) and ML receiver. Monte Carlo simulations
illustrate the performance improvement for dual-mode and
multimode with various selection strategies.

Relations with Prior Work: The concept of adapting both
the number of substreams and the substream rate has been pro-
posed in different contexts in [11]–[13]. Dynamically selecting
the number of substreams and the optimal subset based on
knowledge of the channel correlation matrices was investigated
in [11] for various receivers to improve the performance of
spatial multiplexing in correlated fading channels. Both the
antennas used for transmission, and the rate of the constellation
on each antenna is varied. While the selection framework is
similar to that in [11], our work is different because we adapt
the constellation, the number of substreams, and the antenna
subset based on the instantaneous channel conditions, as op-
posed to the correlation of the channel [14], [15]. Our approach
is suitable when the channel is slowly fading, as in pedestrian
environments, whereas the approach in [11] is preferable when
the channel is fading too fast to adapt to the instantaneous
channel. Partial knowledge of the dominant channel singular
vectors is used in [12] to perform precoding. In other work,
instantaneous channel knowledge is used to vary the number
of substreams to control interference in a MIMO interference
channel in [13]. In contrast, we adapt the number of substreams,
substream rate, and optimal subset to improve throughput and
diversity gain in noninterference fading channels. Extension to
interference channels is an interesting topic for future research.

One way to view our work is in terms of the diversity-multi-
plexing tradeoff [16]. The work in [16] studies multiplexing and
diversity from an information theoretic point-of-view based on
achievable rates. In particular, the authors quantify the amount
of diversity and multiplexing gain for any code by bounding the
average probability of error using the outage probability. Our
work is different in that it deals with a specific code (spatial
multiplexing), includes feedback of channel state information,
and deals with practical receivers. The work in [16] and in other

information-theoretic treatments of the diversity-multiplexing
tradeoff [17], [18] is useful for studying the fundamental diver-
sity-multiplexing tradeoff, whereas our work is useful for prac-
tically achieving the benefits of both diversity and multiplexing
with low complexity and limited feedback.

Compared with other probability-of-error-based work on the
diversity-multiplexing tradeoff [9], [19], [20], we take a prag-
matic view based on instantaneous channel state information.
In particular, [19] studies the multiplexing and diversity tradeoff
in terms of the average probability of error (specifically for po-
larized channels), which requires making certain assumptions
about the distribution of the channel. This comparison is useful
when either diversity or multiplexing is chosen for a succes-
sion of channel realizations but may vary as a function of the
second-order statistics of the channel. Our approach is similar to
that taken in our prior work [9], with the exception that we con-
sider selection diversity instead of space-time block coding and
linear receivers instead of ML for spatial multiplexing, and we
allow for multimode transmission. Overall, an advantage of our
formulation is that we obtain a constructive means for switching
between diversity and multiplexing that is useful in actual wire-
less systems (see, e.g., [21] and [22] for details). A related form
of spatial mode selection is proposed in [20] for transmit and
receiver MMSE precoding. This work, however, requires full
knowledge of the transmit precoder for the chosen mode and is
not readily implementable with limited feedback.

Multimode selection can be viewed in the context of pre-
coding and quantized precoding. Previous work on precoding
(e.g., [23]) assumed perfect channel knowledge at the trans-
mitter to construct an optimal precoder. Our approach uses
only a finite number of possible precoders, thus enabling im-
plementation in frequency-division duplex systems, where the
channel is often not available at the transmitter. Related work
on quantized precoding has focused on quantized beamforming
[24]–[26] and quantized precoding for spatial multiplexing
systems [27]. Our approach differs from prior work in that we
use a very coarse quantization, and we allow for substream
selection, in addition to subset selection. Incorporation and
extension of the results of [27] is possible in the proposed
framework but is treated elsewhere due to lack of space [28].

Multimode antenna selection is also related to the suboptimal
per-antenna rate and power control algorithms proposed in [29].
The algorithm in [29] uses the notion of a “power unit” given
by the total transmit power divided by the number of transmit
antennas. The optimal placement of the power units is then allo-
cated using a brute force search. Our algorithm differs from this
because we only consider turning antennas “on” or “off” without
per-antenna power control. We also address the problem from a
probability-of-error approach instead of an ergodic capacity ap-
proach.

Finally, our work is a natural extension of the existing litera-
ture on antenna subset selection for spatial multiplexing systems
[7], [8], [30]–[35]]. The work in [30] and [32] studies antenna
selection from the capacity point of view, whereas the work in
[7], [8] and [31] studies selection based from the perspective of
error probability. In this paper, we develop generalized transmit
selection algorithms with the goal of improving error rate along
the lines of [7] and [31]. Our approach differs from previous
work in that we fix the overall rate and allow the total number
of substreams to vary as well as the optimal subset. We require
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Fig. 1. Spatial multiplexing system with feedback as considered in this paper. The mode selector determines the optimal transmission mode for a given channel
(from a finite set of transmission modes) and sends the index of this mode back to the transmitter.

slightly more feedback, but we can obtain full diversity, even
with an equal number of transmit and receive antennas, unlike
[7]. We consider a brute force search for the optimal subset; de-
riving suboptimal selection algorithms along the lines of [33]
and [35] is an interesting extension.

Organization: This paper is organized as follows. In Sec-
tion II, we introduce the system model, our assumptions, and
the corresponding mathematical models. Then, in Section III,
we present motivation for dual-mode and multimode selection.
In Section IV, we study dual-mode selection, where either spa-
tial multiplexing or a single transmit antenna is used for trans-
mission. This provides a dynamic interpretation of the diver-
sity-multiplexing tradeoff. In Section V, we generalize our re-
sults to the case of multimode selection where both the number
of substreams as well as the best subset of transmit antennas
is chosen. Section VI provides some probabilistic analysis of
the switching criteria, whereas Section VII discusses how mul-
timode antenna selection can be applied to nonlinear receivers.
Section VIII illustrates error rate improvements via Monte Carlo
simulations. In Section IX, we make some conclusions and pro-
vide suggestions for future work.

II. SYSTEM MODEL

Consider the -transmit antenna by -receive antenna
MIMO communication system illustrated in Fig. 1 that trans-
mits bits per channel use. The system consists of a spatial
multiplexer that produces substreams, a spatial mapper that
maps these streams to transmit antennas, a matrix propaga-
tion channel that is a function of the wireless environment, and
a space-time receiver that uses an estimate of the total channel
to decide on the transmitted bit stream. A low-rate feedback
path is used to determine the number of substreams and
mapping from substreams to antennas.

During each symbol period, bits are demultiplexed into
different bit streams and modulated independently using

the same constellation . Note that the constellation size
per substream is so that a total of bits are trans-
mitted, regardless of the choice of . The spatial multiplexer
produces an -dimensional symbol vector at symbol
period , where .1 For conve-

1We use for conjugate, for transpose, for conjugate transpose, for the
matrix pseudo-inverse, and tr( ) for the trace operator that gives the sum of the
diagonal elements of a matrix, k � k for the usual Euclidean vector norm, and E
to denote expectation with respect to random variable s.

nience, we assume there is no error correction coding and that
, where is the identity ma-

trix. Notice that , and thus, the constellations that make up
are normalized so that the total transmit power is ,
irrespective of . Throughout, it is assumed that .

Given , the symbol vector is transmitted over a subset
of the available transmit antennas. Let be the set of
matrices taken by choosing columns from . For example

and

We will assume that for each has been ordered so that
it can be written as

Each matrix represents a substream-to-antenna map-
ping. The columns of the mapping matrices are simply selection
diversity vectors that select the antenna to transmit the corre-
sponding substream.

We will assume that the transmitter has no knowledge of the
forward-link channel. Therefore, the optimal values of and
(which are denoted and ) are determined at the receiver
and sent back to the transmitter over a limited rate feedback
channel. Using the substream-to-antenna matrix framework, we
will write the transmitted vector as , where
is the average transmit energy. Thus, as mentioned before, this
framework includes antenna subset selection as a special case
[7], [8], [30]–[32], [34] but is even more general.

After precoding, the th transmit antenna transmits the th
entry of . We assume that the transmission band-
width is much less than the coherence bandwidth of the channel
and that the symbol period is much less than the coherence time.
In this case, the channel between the th transmit antenna and
the th receive antenna can be modeled by a complex gain .
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We assume that the antennas are sufficiently separated and that
the environment is sufficiently rich in scatterers to allow
to be modeled as a realization of a proper complex Gaussian
random variable with distribution that is uncorrelated
in space.

Neglecting symbol timing errors and frequency offsets, the
received signal vector after matched filtering and sam-

pling is

(1)

where is a matrix with at entry , and
is complex Gaussian noise with

distributed according to with independent of
for . We refer to as the equivalent channel.

In this paper, we assume that the channel is varying slowly
across a given frame of data but varies independently from
frame to frame. To simplify subsequent notation, we assume
that we have a frame with a single symbol; thus, we let
and suppress the subscripts.

At the receiver, an linear equalizer matrix is
applied to , and then, the components of are detected
independently. For the ZF linear decoder, ,
whereas for the minimum mean square error (MMSE) linear
decoder, ,
where . Note that we address the application of
nonlinear receivers in Section VII.

In this paper, we assume that a zero-delay limited capacity
feedback link is available from the receiver to the transmitter.
Consequently, the parameters and

of can be chosen using exact knowledge

of . The presence of a limited capacity feedback link is rea-
sonable in any nonbroadcast wireless system. Zero delay is not
always a good assumption; however, the amount of delay that
can be tolerated requires extensive investigation on its own (see,
e.g., [36]); thus, we choose to defer this to future work.

Another assumption is that the channel matrix is known
perfectly at the receiver. Estimation methods such as ML and
MMSE techniques discussed in [37] would have to be used to
obtain knowledge of the channel at the receiver. This means
that an with symbol matrix will have to be
transmitted each time the channel changes. Note that this means
we require a training preamble of length that is, in
general, larger than the preamble of length that is required
for detection. In reality, estimation errors are always present and
will degrade performance. The analytical effects of estimation
error is beyond the scope of this paper.

III. PRELIMINARY ANALYSIS AND MOTIVATION

In this section, we provide background and motivation for
combining spatial multiplexing and selection diversity. First, we
consider spatial multiplexing performance. We review diversity
order results that show how it degrades with larger . Then,
we consider antenna selection, where , and the best
transmit antenna is selected. In contrast to random selection, it is
possible to obtain a diversity order of . Finally, we illus-
trate the substantial variation in error rate with both approaches
to prompt optimal selection of both the antenna subset and the
number of substreams.

A. Performance With Spatial Multiplexing Without
Dynamic Selection

The performance of spatial multiplexing with linear re-
ceivers is a function of the effective for each stream

after linear processing. From [7], for the ZF
case

SNR (2)

whereas for the MMSE case

SNR (3)

respectively, where is entry of .
In this paper, we are interested in the probability of vector

symbol error, that is, the probability that at least one of the bits
in the transmission is in error. Let denote the min-
imum distance of the constellation used for transmission on one
of the substreams. Let denote the average number
of nearest neighbors of this constellation [38], [39]. The depen-
dence on is used to remind us that the constellation has
points, whereas the dependence on is used to recall the nor-
malization by . Given and using the nearest neighbor union
bound (NNUB) results from [7], we can bound the conditional
vector symbol error rate (VSER), which is the probability that
at least one transmitted symbol is in error, as

SNR (4)

where SNR SNR , and SNR depends on if the
receiver is ZF or MMSE. The performance, as measured by the
average probability of vector symbol error, is typical in fading
channels. Based on (4)

SNR

SNR

The diversity performance, which is the slope of the average
error rate curve plotted on the log scale [40], depends on the
statistics of the minimum SNR.

In the case where , it has been proven that SNR
is chi-squared distributed with two degrees of freedom [5], [41].
Thus, the minimum SNR is also chi-squared with two degrees of
freedom (which follows since the chi-squared distribution with
two degrees of freedom is equivalent to the exponential distribu-
tion). Note, however, that the post-processing SNR for a single-
transmit single-receive antenna system is also chi-squared with
two degrees of freedom. Thus, with , the diversity
performance for the linear receiver is exactly the same as that
of a single antenna communication link! Therefore, the price of
simple receiver decoding is a reduction in the diversity order.
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This is in contrast to the more complex ML receiver for which
the diversity order is always [3].

In the case where , it can be shown that the diversity
order is in general for the ZF receiver [5], [41]. This
has been proven for the symbol error rate in [5], but a proof for
the VSER does not seem to be available. The MMSE receiver is
found to slightly outperform the ZF receiver though the diversity
order through simulations has been found to be similar.

B. Performance With Selection Diversity

Now, consider a system with that uses optimal subset
selection with the ZF receiver. In this case, is simply the
set of columns of the identity matrix, and the selection problem
corresponds to ideal transmit antenna selection. For , the
equivalent channel is a vector, and it is apparent from the defi-
nition of the pseudo-inverse that ,
which is just maximum ratio combining (normalized to preserve
detection regions). Therefore, the post-combining SNR (with
representing the th column of ) is

SNR (5)

which is a function of the transmit antenna . The most common
selection algorithm is the one that chooses such that the post-
processing SNR is maximized [42]. Let denote the maxi-
mizer. Then, it is possible to approximate the conditional VSER
using the NNUB as

SNR SNR

and the average VSER as

SNR SNR

SNR SNR

The key to evaluating (6) is to recognize that the SNR is
the maximum of chi-squared random variables, each with

degrees of freedom. Using the results from [43], it is pos-
sible to expand this expression into an integral (see [43, 8] for
details). The result of this analysis is that the diversity order
of transmit antenna selection with optimum combining at the
receiver can be shown to be . In contrast, randomly se-
lecting a transmit antenna provides only a diversity order of .
The large diversity order of selection diversity shows the impor-
tance of selection diversity as a transmission mode.

C. Comparison of Multiplexing and Transmit
Selection Diversity

The fact that is fixed makes it is possible to fairly com-
pare the error rate performance of spatial multiplexing with
streams and transmit antenna selection. To provide motivation
for the subsequent development in the paper, in Fig. 2, we pro-
vide a VSER comparison of different signaling schemes with

bits. The ZF receiver with using 256-quadra-
ture amplitude modulation (QAM), 16-QAM, and 4-QAM mod-
ulation is compared with selection diversity (where )

Fig. 2. Vector symbol error rate comparison of different signaling schemes for
various numbers of transmit antennas with R = 8 bits (QAM constellations).

using a 256-QAM constellation. Notice the difference in diver-
sity order for each approach. Note that in all cases except for
selection diversity, .

As expected, selection diversity outperforms all other ap-
proaches in terms of diversity advantage. Its performance,
however, lags the ZF receiver at low SNR. The reason is that
diversity is a high SNR measure of error rate performance.
Spatial multiplexing uses multidimensional constellations with
larger average distance between the points compared with a
dense two-dimensional constellation.

A stochastic approach to optimizing system performance
would be to choose and spatial multiplexing
for of less than and transmit antenna selection
otherwise. This would give both the coding gain of spatial
multiplexing and diversity advantages of selection, each in its
preferred region.

Given instantaneous channel knowledge, we should be able to
do much better. First, performance should improve by dynami-
cally selecting either spatial multiplexing or diversity, based on
the instantaneous channel realization. This is the subject of Sec-
tion IV. Second, we have not considered the effect of optimal
subset selection, which is known to further improve diversity
performance with linear receivers [7]. Allowing both antenna
subset selection and selection of dynamically based on the
channel is the subsect of Section V.

IV. DUAL-MODE: DIVERSITY OR MULTIPLEXING?

Consider the system of Fig. 1 with two modes of operation:
spatial multiplexing and single antenna selection diversity. The
optimal precoding matrix is chosen by the receiver from either

or and conveyed back using
feedback bits. In this section, we consider dynamic approaches
for selection either diversity and multiplexing based on the
VSER, the effective SNR, and the condition number.

A. Vector Symbol Error Rate Based Selection

Given an instantaneous channel realization , the optimal
fixed-rate selection algorithm is to choose the mode that de-
livers the lowest probability of vector symbol error for that given
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channel. Clearly, two selections are required. First, the optimal
element of must be chosen. Second, the optimal number of
substreams (either or ) must be determined.
The motivation for complicating the transmission scheme is the
substantial improvements in diversity order as given by the fol-
lowing theorem.

Theorem 1: Optimal choice of either spatial multiplexing or
selection diversity provides full diversity advantage.

Proof: Selection diversity provides full diversity advan-
tage on the order of (cf. [43]). Optimal mode selection
can only be better than choosing single antenna selection diver-
sity for all channel realizations.

Because we do not always have exact expressions for the
VSER, we will use NNUBs [38] on the symbol error rates to
compute the optimal subset and number of substreams. These
bounds are tight at high SNR, and we find they provide good
selection performance.

The NNUB requires the notions of post-processing SNR
given an antenna subset. Let SNR denote the post-pro-
cessing SNR for the th stream, given precoding matrix .
This could be obtained from either (2) or (3), depending on the
receiver criterion. These SNR results allow closed-form bounds
to be derived. For selection diversity, compute

SNR

(6)

and for spatial multiplexing, compute

SNR (7)

Note that we have used the modified notation, where
SNR is the SNR of the th substream of the ef-
fective channel .

The NNUB-based VSER selection criterion is given as the
following.

Selection Criterion 1—VSER Based Selection: Choose mul-
tiplexing if ; otherwise, choose diversity
transmission from the best transmit antenna.

Based on the tightness of the NNUB, we anticipate full di-
versity advantage from VSER-based selection. For implemen-
tation, , and
should be precalculated. The function can be implemented as
a lookup table or approximated using an accurate polynomial
method; see, e.g., [44]. The cost function can also be simplified
using the approximations for small and

for large .

B. Post-Processing SNR-Based Selection

Although Selection Criterion 1 is close to optimal, its com-
putation makes it difficult to motivate in real-time implementa-
tion. Further, it does not provide intuition about the role played

by the “quality” of the channel. Thus, we also investigate alter-
native selection criteria with lower complexity.

A useful approximation that provides a selection criterion di-
rectly as a function of the post-processing SNR is obtained by
neglecting the nearest neighbors terms in (6) and (7). Then, the
performance criterion can be posed in terms of the arguments of
the function. Remembering that the function is decreasing
with increasing arguments, we propose the following.

Selection Criterion 2—SNR Based Selection: Choose multi-
plexing if

SNR

SNR

Otherwise, choose diversity transmission from the best transmit
antenna.

Selection Criterion 2 reveals the striking difference in the per-
formance dependence of each modulation scheme. Spatial mul-
tiplexing is a function of the worst substream, whereas diversity
transmission is a function of the column of with the largest
norm. Of course, this comparison is interesting because it is not
just a function of the channel; it is also a function of the data
rate and constellation through and .

Effectively, the selection in Selection Criterion 2 is made only
by the argument of the function. Since the number of points
in the vector constellation is the same, this is in fact equiva-
lent to selection based on the union bound on the vector symbol
error probability [10]. Thus, the quality of selections based on
the SNR are essentially related to how well the union bound is
a good predictor of performance. Although there is often a sub-
stantial gap to the true probability of vector symbol error, it was
found in [10] in similar circumstances that the relative perfor-
mance between different bounds was good enough for predic-
tion.

C. Condition Number Based Selection

The selection in Selection Criterion 2 requires the computa-
tion of the post-processing SNR for each symbol stream in each
case of diversity and multiplexing. It would be nice to discover
the characteristics of the channel that make it good for either
multiplexing or diversity to obtain some insight on the diver-
sity-multiplexing tradeoff as well as to further simplify the se-
lection criterion. Since we are using linear receivers, intuitively,
the invertibility of the channel plays a role. However, how does
the required data rate fit in?

To answer this question, we consider the case of spatial
multiplexing with the ZF receiver. Let denote the
nonzero singular values of in decreasing order. Then, from
[7]

(8)

(9)

where is the th column of , and (9) follows from the
Rayleigh–Ritz theorem [45]. Equality occurs when the right sin-
gular vector corresponding to the minimum singular value is a
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multiple of one column of the identity vector. Using (9), it fol-
lows that

SNR (10)

Thus, the performance of the ZF receiver depends on the min-
imum singular value of the channel (for other dependencies
on the minimum singular value, see [46]). Similarly, it can be
shown that the minimum SNR performance of a linear MMSE
receiver also is lower bounded by the channel’s minimum sin-
gular value [11].

In a similar manner, let us now bound the performance with
selection diversity. Let be the th column of . Observe that

(11)

through a similar argument as before. Thus, we have

SNR (12)

Note that the beamformer that achieves equality in (11) is the
right singular vector corresponding to the maximum singular
value of . Therefore, (12) is achieved with optimal combining
at the transmitter. We could approach this bound as close as
desired by increasing the number of vectors in using the
quantization-based approach of [25].

Now, we have tight bounds in (11) and (12) of the oppo-
site direction. This is not really a problem because we can use
the bounds in the following way. Suppose that we select multi-
plexing only when the worst possible minimum SNR is better
than the best possible maximum SNR achieved through selec-
tion diversity. This is a conservative selection policy since we
will not choose multiplexing as often as with optimal selection.
It does, however, afford a nice simplification. Using (11) and
(12), substituting into Selection Criterion 2 and simplifying al-
lows us to propose the following elegant criterion.

Selection Criterion 3—Condition Number-Based Selec-
tion: Let be the regular condition
number of the channel . Choose multiplexing if

(13)

Otherwise, choose diversity transmission from the best transmit
antenna.

Numerically stable algorithms for computing are avail-
able in the matrix computation literature (see, e.g., [47] for de-
tails).

The beauty of Selection Criterion 3 is that we can relate the
quality of the channel, in this case the condition number, directly
to the minimum distance of the constellations as a function of
the rate. This provides substantial intuition about dual-mode se-
lection. Specifically, allowing a diversity mode in the system im-
proves robustness to ill-conditioning of the channel. The reason
is that the diversity mode depends only on the power that can be

received by the best transmit antenna and is invariant to the con-
dition number of the channel. A similar result, although it uses
a different condition number, was obtained in [9] by examining
the tradeoff between transmit diversity and spatial multiplexing
with maximum likelihood receivers.

It is interesting to question what happens to the condition
number threshold in (13) for a fixed , except that the rate

increases. To do this, we need to understand how the ratio
behaves as increases. For this cal-

culation, we adopt the approach of [10] and suppose that both
diversity and multiplexing use a constellation family with a min-
imum distance that is only a function of the rate, i.e., the number
of points in the constellation. Let be the squared distance
of the constellation family as a function of the data rate, and sup-
pose that the constellation energy is normalized to one. There-
fore, , and .
The reason for the factor of in the latter case is that we as-
sumed that the per-antenna constellation was normalized so that
the total transmit energy across all the transmit antennas is one.

If the dimensionality of the constellation family is fixed, then
the minimum distance between points decreases as the number
of points in the constellation increases. Thus, is
increasing since . For example, for the QAM
constellation family

(14)

Therefore, for large , which
is clearly increasing as increases. In conclusion, when the rate
increases, the channels do not need to be “as invertible.” Thus,
spatial multiplexing is used more often. This is reasonable since
the capacity of a MIMO system is fundamentally larger than the
capacity of a system with antenna selection.

V. MULTIMODE TRANSMISSION

In the previous section, we restricted ourselves to choosing
between selection diversity and spatial multiplexing for a given
channel realization. In this section, we allow selection from the
complete set of subsets . This allows the freedom to
adopt approaches that are in between single antenna selection
diversity and full spatial multiplexing. We propose various op-
timal and suboptimal selection schemes based on the error rate
as well as an eigenmode analysis.

A. Multimode Selection From Error Probability
Considerations

In the general case of multimode selection, the receiver must
select both the number of data streams as well as optimal
precoding matrix within . The total number of distinct feed-
back messages that are required is

(15)

which can be implemented using bits of the feedback control
channel. Thus, the number of bits of feedback that are required
scales linearly with the number of transmit antennas. In contrast,
consider quantizing the channel and conveying the coefficients
back to the transmitter. If bits are used to quantize each real or
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imaginary component, a total of bits are required for
feedback. Sending back only the sign (one bit per coefficient)
still requires bits—a significant penalty even with an
extremely coarse, and potentially not worthwhile, quantization.
Dual-mode selection requires only bits of feed-
back.

The optimal fixed rate selection metric given perfect channel
knowledge is to choose the mode that provides the lowest prob-
ability of error. The following theorem on the achievable diver-
sity order in Rayleigh fading channels, which follows directly
from Theorem 1, is provided for completeness.

Theorem 2: Selection of the optimal and such that
minimizes the conditional probability of error

provides full diversity advantage.
Proof: Selection diversity provides full diversity advan-

tage on the order of (cf. [43]). Since selection diver-
sity is included among the subsets, optimal selection can only
be better than using single-antenna selection diversity for all
channel realizations.

Both dual-mode and multimode selection ideally provide full
diversity advantage. We will show that the difference in perfor-
mance can be characterized as an array gain in Section VIII.

To obtain a close but computable approximation to optimal
selection, we rely on the NNUB on the symbol error rate to
obtain a form of optimal selection that does not require sig-
nificant numerical integration. Remembering the definition of
SNR , we propose an approximate VSER criterion by
exploiting the generality of (7).

Selection Criterion 4—Complete VSER-Based Selec-
tion: Choose and that solve

SNR

where , and .
The minimization can be carried out with a brute-force

search. For implementation, and
should be precalculated for all and the function approx-
imated using an accurate polynomial method (see, e.g., [44]).
Again, the selection could be simplified using the approxima-
tions to the NNUB and Q function.

When complexity is an issue, it is more direct to make the
selection directly in terms of post-processing SNR and the min-
imum distance of the constellation by neglecting the effects
of the nearest neighbors on the constellation. In this case, we
propose the following suboptimal selection based on the worst
post-processing SNR.

Selection Criterion 5—Complete SNR-Based Selection:
Choose and that solve

SNR

For the brute force search, a total of comparisons need
to be made. As before, the effectiveness of SNR-based selec-
tion depends on the ability of the NNUB to provide an accu-

rate relative prediction of vector symbol error probability. Since
the NNUB is only reasonably tight at high SNR, we expect that
SNR-based selection will yield better results as the SNR grows
large.

B. Eigenmode-Based Selection

In the previous section, it was possible to relate dual-mode
selection to the condition number of the matrix channel. The in-
tuition in the case of multimode selection is that the “array gain”
should be improved, in a sense, by providing more tolerance to
ill-conditioned channels. The reason is that by allowing more
flexibility in how we map data to the antennas, we should be
able to better couple energy into the eigenmodes of the channel.
To understand this intuition, we study the impact on the im-
provement of the eigenmodes of the equivalent channel and gen-
erate a suboptimal but lower complexity selection criterion as a
byproduct.

Consider the ZF receiver. The performance is determined by
the smallest singular value of . For a given , the ques-
tion is how to bound the best of the worst singular values. It turns
out that we can solve this problem by leveraging a result from
matrix theory, and the general result is summarized in the fol-
lowing theorem.

Theorem 3: Let be the singular
values of arranged in decreasing order. Given , the fol-
lowing is true:

(16)

for all .
Proof: The proof follows from the Poincare Separation

Theorem [45, p. 190] by recognizing the fact that
is a subset of the set of all unitary matrices. Equality
on the left occurs when is a permutation of the dom-
inant right singular vectors of . Equality on the right occurs
when is a permutation of the least dominant right sin-
gular vectors of , assuming the two largest singular values are
unique.

The upper bound in Theorem 3 is the one of interest for the
present discussion. This is indicates how well we could improve
the worst singular value if it were possible to select the best
unitary matrix of dimension with unit norm columns.
The upper bound is achievable when consists of the
columns of the right singular vector matrix of that correspond
to the largest singular values. Similarly, when equals
the singular vectors corresponding to the smallest sin-
gular values of , the lower bound is achieved.

Practically, the restriction to the columns of the identity ma-
trix will degrade performance relative to optimum in much the
same way that selection diversity is worst than maximum ratio
combining. We can decrease the gap by increasing the number
of elements of (see [27] for details). Thus, in what follows,
we use to approximate the performance from selection
of the optimal subset of .

A straightforward eigenmode selection rule would solve for
the that maximize the minimum singular value. This
requires computing for all possible

. This is arguably less complex than the SNR- or NNUB-
based approaches but can still be quite intensive even for mod-
erate . Using the upper bound in (16), however, we propose a
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suboptimal, low-complexity selection criterion by solving first
for using Theorem 3 and then for the
that most closely achieves the optimum.

Selection Criterion 6—Eigenmode Based Selection: Choose
such that

(17)

and then, find the that solves

(18)

The real advantage of Selection Criterion 6 is that only the sin-
gular value decomposition of and, at most, min-

imum singular values are needed instead of all minimum
singular values. The tradeoff is, of course, accuracy since the
assumption is that is sufficiently dense, which may break
down in the cases considered.

Selection of based on the singular values of provides in-
tuition about multimode selection in low-rank channels. Specif-
ically, if is of rank , there is no reason to consider any
since the resulting matrix will be low rank and at least one sub-
stream lost in the null space. Notice, however, that depending on
the distribution of the remaining singular values, may
be optimal, depending on and the constellations according to
Selection Criterion 6.

VI. PROBABILISTIC ANALYSIS

The selection criteria derived in Sections IV and V are based
on the conditional error probability and, thus, are valid for any
channel distribution, as long as the channel is flat-fading. In
this section, we use the complex Gaussian assumption about
to study the probabilistic behavior of systems with dual-mode
and multimode selection. We will study the dual-mode selec-
tion probability, which is the average number of times diversity
or multiplexing is used as a function of rate. Then, we will con-
sider the solution of the optimum as a function of rate in the
multimode case. We use exact and asymptotic results from the
theory of random matrices where needed.

A. Dual-Mode Selection Probability

Consider the case of dual-mode transmission as described in
Section IV. Suppose that the condition number based selection
method is used as described in Selection Criterion 3. For this cri-
terion, we would like to compute the probability that each mode
is selected. This provides useful information for the system de-
signer about how often each mode will be used in the system
and, thus, the frequency of feedback.

Expressed formally, the objective is to compute
based on our complex Gaussian

assumption about the statistics of . In the case of , we
can use an exact expression for the probability density function
of from [48, p. 72] given by

to calculate exactly
in terms of gamma and hypergeometric functions. The resulting
equation is long; thus, we omit the final functional form (it can
be evaluated with Mathematica).

Beyond , the exact distribution for the condition
number does not seem to be available. For reasonably sized

, it is possible to use Monte Carlo simulation methods to nu-
merically estimate this distribution and then compute the corre-
sponding probability.

Example 1: Consider the phase shift keying (PSK) family
of constellations with the ratio

. In Fig. 3, we illustrate the
switching probability as a function of for various choices
of obtained via Monte Carlo simulation, assuming
phase shift keying (PSK) constellations. While the minimum
distance functions for a given constellation family are only
defined for integer rates, we plot the rate variation as a smooth
function for illustrative purposes. We see another interesting in-
dication of the effect of rich scattering MIMO Rayleigh fading
channels when the transmit and receive array sizes increase. In
particular, the expected value of the condition number grows
larger and larger as and increase. The 0.4 crossing point
shifts from 4 bits per channel use for to 7 bits
per channel use for .

For the purposes of developing intuition, we use asymptotic
results that are available from the random matrix literature. First,
consider the case where and grows large. Then,
based on [48]

(19)

Therefore

(20)

Now, to obtain some insight, we again assume that the
QAM constellation family with squared minimum dis-
tance is used for transmission. Then, the ratio

, and

(21)

The expression in (21) provides one very important point. As
increases, the probability of choosing spatial multiplexing

decreases, assuming that is fixed. This follows because
is increasing as a function of under

some general assumptions [49]. In fact, this is what we would
expect, given the results in Fig. 3 and Example 1. As the number
of entries in the matrix channel grows, the largest singular value
will grow. Thus, we would expect the matrix channel found
between large antenna arrays to be highly accommodating to
selection diversity.

Now, for the case where , suppose that ,
where . Then, asymptotically, it can be shown
[48] that converges almost surely to .
Using this result, we can derive, for illustrative purposes, an
equivalent deterministic selection criteria as a function of and
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Fig. 3. Plot of the probability of selecting spatial multiplexing for the PSK
constellation family with R = 2M and M = M = 2; 3; 4; 8.

. With this asymptotic selection cri-
teria, spatial multiplexing is used if

(22)

This rule simplifies to choosing spatial multiplexing if

(23)

This result provides the intuition that for small , we
are more likely to choose spatial multiplexing than for
close to one when is large. Thus, the receive size of the an-
tenna array plays an important role in the choice of an optimal
transmission scheme.

B. Multimode Selection Probability

Now, consider the case of multimode transmission as de-
scribed in Section V. Suppose that we use eigenmode selec-
tion as described in Selection Criterion 6. For this criterion, we
would like to compute the probability that mode from a
possible modes is selected. This provides
a measure of utilization of each mode of the system. In effect,
it describes the balance between diversity, multiplexing, and the
modes in between. The behavior of this probability as grows
large is interesting in its own right since it gives a more granular
twist on the multiplexing versus diversity issue.

Let be the joint distribution of the or-
dered eigenvalues of (with respect to the Lebesgue mea-
sure on ) arranged in increasing order. Recall that we as-

sume . For the complex Gaussian case distribution,
relying on results from [50] and [51]

where

and .
Now, remembering that the results in Section V-B were stated

in terms of the singular values, the probability mass function of
interest the probability of given , and
are given by

for

which is equal to

for

Evaluating this probability requires integrating, over the appro-
priate subspace, (24), shown at the bottom of the page. Be-
yond special cases, it is difficult to compute (24) in closed form.
Therefore, we resort to numerical methods to evaluate the inte-
gral or preferably Monte Carlo methods to estimate the proba-
bility mass function.

Example 2: Consider the QAM family of constellations. In
Fig. 4, we illustrate for various choices of and

with . The QAM minimum distance expression
in (14) and Selection Criterion 6 were used. This allows the
selection to be plotted independently of the SNR.

First, notice, as was similarly observed in Example 1, that for
a fixed , the number of most probable substreams increases
as the rate increases. This effect is illustrated for and for

. We conjecture that as , . This would
relate, in some sense, to Telatar’s outage probability conjecture
in [52].

In addition, note that for a fixed rate, the number of most
probable substreams increases as increases. This effect is a
direct result of our assumption of a rich scattering environment.
This, however, is not an indication that as .

(24)
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Fig. 4. Plot of the multimode selection probability for the QAM constellation
family and M = M = 4; 8; 16 for various choices of R. Notice how the
probability clusters around a subset of available modes.

Another important observation is that each of the plots have
modes that have approximately zero selection probabilities.
This is an indication that it may often be more practical to
restrict to a subset of . This would reduce the
require amount of feedback and the transmitter complexity.

C. Reduced-Complexity Mode Selection

The probabilistic results in Sections VI-A and B can be
used for complexity reduction in many situations. In this
case, the possible modes can be restricted to lie in a set

. The optimal substream to antenna map-
ping would be selected from within .

Restricting the mode to lie in a subset would especially be
beneficial in spatially correlated situations such as those being
studied in the IEEE 802.11N work group [53]. In general, a spa-
tially correlated channel will bias the modal probability distri-
bution to a subset of . Using probabilistic tech-
niques, feedback and implementation complexity can thus be
dramatically reduced.

VII. APPLICATION TO NONLINEAR RECEIVERS

While the results presented in Sections IV and V were tailored
for use with linear receivers, dual-mode and multimode antenna
selection are also applicable to nonlinear receivers.

The V-BLAST decoder is a successive cancellation decoder
that can provide error rate improvements over linear receivers
without a substantial complexity penalty [54]. Just as with linear
receivers, the performance of V-BLAST decoding is a function
of the minimum substream SNR denoted by SNR . It was
shown in [11] that the minimum SNR can be bounded as

SNR (25)

Fig. 5. Error rate performance of dual-mode selection for a M = M =
2(R = 4) and a M = M = 4(R = 8) system compared with single
transmit antenna selection and spatial multiplexing.

To maximize this lower bound, we can use Selection Criterion 3
for dual-mode and Selection Criterion 3 for multimode antenna
selection.

In contrast to V-BLAST and linear receiver decoders, joint
ML decoding across all substreams provides optimal perfor-
mance at a possibly severe complexity penalty. ML performance
is primarily a function of the receive minimum distance, which
is defined as

(26)

This can be lower bounded by the case when the minimum error
vector is collinear to the minimum singualar vector
direction of , yielding

(27)

The bound in (27) can thus be maximized using Selection Crite-
rion 3 with dual-mode antenna selection and Selection Criterion
6 with multimode antenna selection.

VIII. SIMULATIONS

In this section, we provide some Monte Carlo simulations
of the vector symbol error rate for dual-mode and multimode
antenna selection under different selection criteria. We used an
i.i.d. Rayleigh fading model, as discussed earlier. The plots use
the average per bit SNR .

Experiment 1: In this experiment, we simulated dual-mode
antenna selection for both 2 2 and 4 4 systems with ZF de-
coding using the various criteria proposed. For the 2 2 system,
we fixed bits per channel use, whereas for the 4 4
system, we fixed bits per channel use. The results, which
are shown in Fig. 5, provide insight into how each criteria per-
forms. For , there is little difference between the perfor-
mance between the three different criteria. However, the
system shows a pronounced difference between Selection Crite-
rion 1-2 and Selection Criterion 3. The difference is almost 1 dB
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Fig. 6. Error rate performance of multimode selection for a M = M =
4(R = 8) system compared with dual-mode selection, single transmit antenna
selection, spatial multiplexing, and optimal MMSE precoding proposed by
Scaglione et al. Multimode selection significantly outperforms dual-mode
selection and approaches the performance obtained with optimal precoding.

between them, whereas the difference between the first two is
much smaller. This is indicative of the fact that Selection Cri-
terion 3 is only an approximate minimizer of the probability of
vector symbol error. Compared with plain spatial multiplexing,
it is clear that dual-mode selection substantially improves the
diversity order with a minimal amount of feedback with a gain
of about 6 and 3.5 dB at for and , respec-
tively.

Selection diversity is plotted to show the diversity order of the
dual-mode scheme. All three criteria provide the full diversity
order of , verifying that the results of Theorem 1 apply
even with our suboptimal selection criteria. Note that the benefit
of dual-mode antenna selection is not fully evident in the

system because the probability of choosing selection diversity
is so high in this scenario. The benefit of dual-mode antenna
selection is more pronounced for the system, where the
gain provided by dual-mode antenna selection is approximately
1.5 dB over just transmit selection.

This is also an important indication that the performance of
dual-mode antenna selection is highly dependent on the number
of transmit antennas. We expect the dual-mode array gain over
selection diversity to continue to increase as increases. This
would be expected because the most probable modes usually
strictly satisfy .

Experiment 2: In this experiment, we considered Selection
Criteria 4–6 for multimode antenna selection on a 4 4 system
using ZF decoding with bits per channel use. We used
the mode set with 256-QAM, 16-QAM, and 4-QAM.
The results are shown in Fig. 6. For comparison, we show single
transmit antenna selection with as well as spatial mul-
tiplexing with and a ZF receiver. By comparing with
the transmit antenna selection curve, we see that all the selec-
tion criteria provide full 16th-order diversity, verifying that we
can apply the results of Theorem 2 to our suboptimal selection
strategies. Of particular interest is that Selection Criteria 4-6
all yield approximately identical probability of vector symbol
error performance. Thus, we can choose the lowest complexity

Fig. 7. Error rate performance comparison of multimode selection for aM =
M = 4(R = 8) system with a ZF linear receiver and a V-BLAST receiver
and performance of limited feedback beamforming.

solution with little degradation in error rate performance. The
diversity gain gives multimode selection a substantial 8-dB im-
provement over standard spatial multiplexing at .

For comparison with dual mode transmission, we plot the re-
sults of using Selection Criterion 1. This is the best dual-mode
criterion, but it still performs more than 5 dB away from any of
the three multimode selections. This shows, as we conjectured,
that multimode selection would provide additional array gain.

To see how multimode antenna selection performs in compar-
ison with an optimal infinite precision feedback system, MMSE
precoding using an MMSE linear receiver with the trace cost
function (as proposed by Scaglione et al. in [23]) was simu-
lated. This system uses an MMSE receiver and a transmit pre-
coder that assumes perfect channel knowledge at the transmitter.
Multimode selection performs within 2 dB of two-substream
MMSE precoding. We chose the best number of substreams for
the MMSE to provide the most fair comparison. This difference
illustrates the tradeoff between limited feedback antenna selec-
tion and unlimited feedback precoding. The 2-dB penalty comes
with a system architecture that is substantially easier to imple-
ment. This result is quite striking, given that MMSE precoding
i) uses perfect channel knowledge, ii) allows waterfilling among
substreams, and iii) uses a more complex linear receiver.

Experiment 3: The performance of bit multimode
antenna selection using Selection Criterion 6 with a V-BLAST
receiver and is examined in this experiment.
For comparison, 256-QAM limited feedback beamforming
from [25] using a 4-bit codebook and an bit multimode
antenna selection with a ZF receiver are shown. The results are
presented in Fig. 7. Multimode precoding with a linear receiver
provides more than a 5.5-dB improvement over beamforming.
Employing a V-BLAST receiver instead of a linear ZF receiver
adds another 0.5 dB. The reason that the V-BLAST receiver
does not provide a substantial improvement in performance is
that multimode precoding already provides the linear ZF re-
ceiver with the full diversity available. Thus, V-BLAST cannot
provide additional diversity advantage and further suffers from
error propagation, unlike the ZF receiver. This experiments
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Fig. 8. Error rate performance comparison of multimode selection with
various approximations to error rate selection.

Fig. 9. Coded bit error rate performance comparison of multimode selection
and spatial multiplexing using a convolutional outer code.

indicates the validity of Selection Criterion 6 for use with
nonlinear receivers.

Experiment 4: Although Selection Criterion 5 is an approx-
imation to Selection Criterion 4, there are other approximations
that could be used. Fig. 8 shows the performance with the ap-
proximation . This rids Selection Crite-
rion 4 of the exponent computation. All three criteria perform
approximately the same. Interestingly, Selection Criterion 5 ac-
tually outperforms the exponential approximation at high SNR.

Experiment 5: The analysis in this paper was geared pri-
marily to optimizing the uncoded vector SER. Real systems,
however, use outer codes to account for variation across the
eigenmodes. Fig. 9 demonstrates the coded bit error rate per-
formance of 4 4 multimode antenna selection using Selection
Criterion 6 and 4 4 spatial multiplexing. The outer code
was a constraint length two convolutional code with an ideal
random interleaver. A ZF linear receiver was used with a soft
Viterbi decoder. The system was simulated on the spatially un-
correlated Rayleigh fading channel and on the transmit-receive

Fig. 10. Bit error rate performance comparison of multimode selection with
the power loading algorithm in [57].

Rayleigh correlated channel considered for IEEE 802.11N
[55]. The transmit and receive correlations were taken from the
“micro correlated” model in [56]. With a spatially uncorrelated
channel, the multimode system provides approximately a 14-dB
improvement over spatial multiplexing. The improvement is
even more dramatic with the realistic correlated channel model.
In the correlated case, spatial multiplexing exhibits a bit error
rate of approximately 0.5 for all SNR values. This is demon-
strative of the problems encountered by spatial multiplexing in
low rank channels.

Experiment 6: This experiment, which is shown in Fig. 10,
compares 4 4 multimode antenna selection with bits
and Selection Criterion 6 to power loaded spatial multiplexing,
as proposed in [57]. The multimode performance is shown with
a linear ZF receiver and a V-BLAST receiver. The system in [57]
assumes a V-BLAST detector. At an error rate of , the mul-
timode systems provide more than an 8-dB improvement over
the algorithm in [57]. As in Experiment 3, the gain of V-BLAST
over the ZF receiver is marginal for the same reasons as noted
in Experiment 3. Note that the power loading algorithm is not a
limited feedback algorithm since perfect knowledge of the sub-
stream powers is assumed. Thus, multimode antenna selection
can be implemented in a limited feedback scenario with a large
gain.

IX. SUMMARY AND CONCLUSIONS

We proposed multimode antenna selection where both the
number of substreams and the mapping from substreams to an-
tennas was optimally chosen based on the channel and conveyed
from receiver to transmitter via a low-rate feedback link. Our re-
sults were tailored to spatial multiplexing systems using linear
receivers under the assumptions of a flat-fading channel and a
zero-delay, zero-error feedback link. We found that both dual-
mode and multimode selection improved the diversity gain dra-
matically over simple spatial multiplexing. Multimode showed
higher array gain over simple dual-mode selection, however. We
derived optimal and suboptimal selection criteria and related the
selection problem and potential performance improvements to
the eigenstructure of the channel.
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One of the main assumptions we made was that the overall
data rate was fixed. Thus, the selection criterion was tasked with
reducing the error probability for a given data rate. In effect, this
is a scheme for fixed-rate spatial adaptation since only the spa-
tial dimension is adapted. Of course, if a feedback channel is
available, some applications may benefit from adapting the data
rate with the goal of maximizing throughput for a target error
rate. The proposed criteria naturally extend to allow the rate to
be adaptive. In brief, the data rate threshold needs to be trans-
lated to a selection threshold. Then, for a set of candidate rates,
the optimum multimode solution can be derived, and the largest
rate that meets the threshold can be selected for transmission.

An interesting byproduct of our statistical analysis for
Rayleigh matrix channels is the frequency of use of each
mode. Based on these results, for a given data rate, it may not
be necessary to have the option of selecting all modes since
only a subset of the available modes are chosen with high
probability (cf. Fig. 4). This has the potential to reduce the
amount of feedback and yet still maintain the performance of
multimode selection. Of course, more work is needed to study
these cases to ensure that these low-probability events are not
big contributors to the probability of error.

An important point that is not addressed in this paper is the ef-
fect of delay and errors in the feedback channel. This will lead to
a degradation of the bit error rate performance compared with
ideal channels. A detailed analysis, along the lines of [36], is
a possible avenue of future work. Further, the statistical anal-
ysis provided was only for Rayleigh fading matrix channels,
which are known to be ideal in practice. Studying the proba-
bility of mode selection in different environments, as a function
of the propagation parameters, using characterizations of mea-
sured MIMO channels [58] is an interesting topic for future re-
search.
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