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H(Y N jUc) = H(Y N jUN ) and H(ZN jUc) = H(ZN jUN); (5)
follows from the i.i.d. properties of UN , Y N and ZN .

In Step 2), we note that R � � = I( ~U ; ~Y ) � I( ~U ; ~Z) � � and
therefore (R � �)(1 � �=2) is parabolic in �, with the minimum at
� = 1 + [I( ~U ; ~Y ) � I( ~U ; ~Z)]=2. Furthermore, (R � �)(1� �=2) =
I( ~U ; ~Y ) � I( ~U ; ~Z) when � = 0 or 2 + I( ~U ; ~Y ) � I( ~U ; ~Z). Hence,
(R� �)(1� �=2) < I( ~U ; ~Y )� I( ~U ; ~Z) when � 2 (0; 2+ I( ~U ; ~Y )�
I( ~U ; ~Z)).

On the other hand, for � > 0

I(U ; Y )� I(U ;Z) < I( ~U ; ~Y )� I( ~U ; ~Z): (16)

Since I(U ; Y ) � I(U ;Z) is continuous in � with the value of
I( ~U ; ~Y )� I( ~U ; ~Z) at � = 0, and (R� �)(1� �=2) is continuous and
constant in � with the value less than I( ~U ; ~Y ) � I( ~U ; ~Z). If the two
curves do not intersect, then there is no constraint on �. However, if the
two curves intersect, then 0 < � < ��, where �� is the smallest value
such that the two curves intersect. Then the condition on � becomes
0 < � < �0, where �0 = minf��;1g. Thus

I(U ; Y )� I(U ;Z) � (R� �)(1� �=2)

when

� 2 (0; 2 + I( ~U ; ~Y )� I( ~U ; ~Z))

� < �0:

Note that for � � 2+I( ~U ; ~Y )�I( ~U ; ~Z), I( ~U ; ~Y )�I( ~U ; ~Z)�� < 0,
1 � � < 0, � > 1, and there is nothing to prove.

In step 3, the wiretapper’s decoding process is considered. The term
H(UcjS

K ; ZN ) is the entropy of the auxiliary codeword given the
wiretapper’s observation and the bin in which the auxiliary codeword
is. It can be bounded by using Fano’s inequality as follows:

H(UcjS
K ; ZN ) � h(PB) + PBNI( ~U ; ~Z);

where h(�) is the binary entropy function, and PB is the probability of
error in decoding ZN for Uc given SK , and therefore

H(UcjS
K ; ZN )

H(SK)
�

h(PB) + PBNI( ~U ; ~Z)

(R� �)N
: (17)

The conditional entropy can be bounded by via bounding the wire-
tapper’s probability of error in the bin decoding. PB can be made arbi-
trarily small given sufficiently small � and sufficiently large N via the
AEPs since there are 2N[I( ~U;~Z)�� ] sequences in a subbin which is
exponentially smaller than 2NI(

~U;~Z).
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Abstract—Multiple-input–multiple-output (MIMO) communication sys-
tems can provide large capacity gains over traditional single-input–single-
output (SISO) systems and are expected to be a core technology of next
generation wireless systems. Often, these capacity gains are achievable
only with some form of adaptive transmission. In this paper, we study the
capacity loss (defined as the rate loss in bits/s/Hz) of the MIMO wireless
system when the covariance matrix of the transmitted signal vector is
designed using a low rate feedback channel. For the MIMO channel,
we find a bound on the ergodic capacity loss when random codebooks,
generated from the uniform distribution on the complex unit sphere,
are used to convey the second order statistics of the transmitted signal
from the receiver to the transmitter. In this case, we find a closed-form
expression for the ergodic capacity loss as a function of the number of
bits fed back at each channel realization. These results show that the
capacity loss decreases at least as 2 where is the
number of feedback bits, is the number of transmit antennas, and

= min where is the number of receive antennas. In
the high SNR regime, we present a new bound on the capacity loss that is
tighter than the previously derived bound and show that the capacity loss
decreases exponentially as a function of the number of feedback bits.

Index Terms—Adaptive modulation, capacity loss, limited feedback,
multiple-input–multiple-output (MIMO) systems, Rayleigh channels.

I. INTRODUCTION

Because of their capacity and quality benefits, multiple-input–mul-
tiple-output (MIMO) wireless systems are expected to be a core tech-
nology in next evolution third-generation (3G) and fourth-generation
(4G) wireless systems. In addition, the performance of MIMO systems
can be significantly improved by adapting the transmitted signal to the
current channel conditions (see, for example, the discussion in [1]).
When the channel cannot be estimated at the transmitter, such as is the
case in frequency division duplexing, systems can employ a feedback
link to convey quantized channel state information (CSI) and obtain
capacity performance close to the scenario when the transmitter per-
fectly knows the channel. The feedback rate, however, must be chosen
judiciously because the feedback channel may only support a small
data rate and the feedback bits are allocated as overhead on the reverse
data path. To satisfy these rate constraints, low-rate (or limited) feed-
back has been studied in various scenarios and special cases [2]–[18].
These techniques include feedback adaptation techniques specific to
transmit beamforming [6]–[8], precoded orthogonal space-time block
coding [9], [11], [12], [16], and precoded spatial multiplexing [14].
Initial performance analysis of some of these techniques was given in
[8], [9], and [13]. The basic idea is that a limited number of feedback
bits representing some sort of CSI are transmitted from the receiver to
the transmitter. The transmitter uses this small number of bits to adapt
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the transmitted signal to the current channel conditions. These limited
feedback systems are currently being studied for use in IEEE 802.11N
and IEEE 802.16E compliant wireless systems.

One particularly powerful adaptive technique is covariance adapta-
tion [3], [4], [19], [20]. In this technique, feedback is used to convey
the covariance matrix to the transmitter. Covariance adaptation has
been considered for unquantized statistical feedback [19], [21] and for
limited feedback [3], [4]. Other work has considered random coding
techniques [13], antenna selection techniques [22], [23], and per an-
tenna rate control [24], [25]. When covariance adaptation is combined
with limited feedback, the transmitted signal’s covariance matrix is re-
stricted to lie in a codebook that is known to both the transmitter and
receiver. The receiver can then choose the optimal covariance matrix
from the codebook using its channel estimate and transmit the binary
index of the chosen covariance matrix to the transmitter. Because the
transmitter knows the codebook, the received binary index can be used
to recover the coodebook covariance matrix chosen based on current
channel conditions.

Despite the expected multiplexing and diversity gains when feed-
back is employed in MIMO systems, feedback still requires increased
transmitter and receiver complexity. Therefore, it is of utmost impor-
tance to quantify the inherent tradeoff between data rate and feedback
amount. Characterizing this tradeoff is equivalent to understanding the
relationship between the capacity loss incurred from using finite in-
stead of infinite resolution feedback and the feedback rate, (i.e., the
bits/s/Hz reduction incurred from using a limited number of feedback
bits instead of perfect feedback). To remedy this problem, we analyze
the rate degradation or capacity loss incurred by restricting the trans-
mitted signal’s covariance matrix to lie in a codebook known to both
the transmitter and receiver. We analytically tradeoff the feedback rate
and capacity loss in the same manner as quantization rate and distor-
tion are tradedoff in rate-distortion theory [26]. Our results show that
the capacity loss decreases as O 2�B=(2MM �2) as the number of
feedback bits B grows large forMt transmit antennas,Mr receive an-
tennas, and M = minfMr;Mtg.

We assume that the matrices in the covariance codebook are gener-
ated independently and uniformly on the set of positive semi-definite,
Hermitian, trace constrained matrices. Interestingly, we show this uni-
form distribution can be generated from the uniform (or Haar) distribu-
tion on a higher-dimensional complex unit sphere. The uniform com-
plex spherical distribution has been shown to be optimal for covariance
quantization in the MISO Rayleigh fading setting [13] and is extremely
robust to situations where the channel has rapidly changing statistics.
We compute a closed-form expression for the capacity loss as a func-
tion of the number of bits for this random codebook method. Note that
asymptotic capacity loss results were also derived in [13], [27], [28].

This paper is organized as follows. In Section II, we give an overview
of the limited feedback system model under consideration. In Sec-
tion III, we study uniformly distributed covariance codebooks. In Sec-
tion IV, we derive a bound on the ergodic capacity loss as a result of
using randomly generated codebooks with uniform distribution on the
complex unit sphere. Furthermore, in the high SNR regime we derive
a tighter upper bound for the ergodic capacity loss, and we discuss the
implications of this analysis and the design of feedback as an over-
head in a two-way communication system in Section V. In Section VI
simulation results are presented, and we conclude with future points of
emphasis in Section VII.

II. LIMITED FEEDBACK SYSTEM OVERVIEW

We consider the flat fading MIMO channel with additive white
Gaussian noise. The vector of received samples at block index k is
yyyk = yk1 ; . . . ; y

k
M

T
from the Mr receive antennas and is given by

yyyk = HHHkxxxk + eeek

where xxxk = xk1 ; . . . ; x
k
M

T
is the transmitted vector from

the Mt transmit antennas, HHHk is the Mr � Mt channel matrix,
eeek = ek1 ; . . . ; e

k
M

T
is the zero-mean complex Gaussian noise

vector with covariance matrix N0IIIM , where IIIM is the Mr � Mr

identity matrix. The block length will be denoted by K , and the
block of transmitted vectors conveys a random message variable
! 2 f1; . . . ; 2KR g where R is the rate.

We will assume a power constraint of

tr (E [xxxk(!)xxx
�
k(!)]) � Ek

where E[�] denotes the expectation operation taken over the random
message variable !, tr(�) denotes the trace of the matrtix, and xxx�k de-
notes the conjugate transpose of xxxk . We will use the assumption (as
discussed in [29]) that Ek = E for all k 2 f1; 2; . . . ; Kg. Therefore,
the power constraint is independent of the channel realization and no
temporal power control is used.

Two cases of channel conditions will be employed in our discussion
and development. The first case will be the case of a fixed and deter-
ministic channel where HHHk = HHH for all k 2 f1; 2; . . . ; Kg. For the
fixed and deterministic case we will assume that HHH is full rank. The
second case will be the independent and identically distributed (i.i.d.)
Rayleigh-fading scenario where each HHHk is chosen memorylessly to
have i.i.d. CN (0; 1) entries.

It is assumed that an instantaneous feedback link is employed in the
communication system and that the feedback is noiseless with a limited
transmission rate of B bits/cycle. Also, we assume that the receiver
has complete knowledge of the channel matrix HHHk . For each channel
realization, B bits of data are conveyed back to the transmitter.

The receiver uses its knowledge of yyy1; . . . ; yyyK andHHH1; . . . ;HHHK to
decode to a symbol output realization W of the transmitted message
realization W . The probability of error will be denoted as P (K)

e =
Pr(!̂ 6= !). If a sequence of ( 2KR ; K) codes exists such that the
power constraint is satisfied and P (K)

e ! 0 as K ! 1, the rate R is
said to be achievable. The supremum of all achievable rates defines the
capacity of the system.

For a fixed and deterministic channel realization HHHk = HHH and
signal-to-noise ratio � = E=N0, given that the input signal has a com-
plex Gaussian vector distribution, the mutual information of the MIMO
channel subject to the covariance constraint E [xxxk(!)xxx

�
k(!)] = EQQQ is

given by [1], [30]

CQQQ(�;HHH) � log det (IIIM + �HHHQQQHHH�) (1)

where QQQ is the Mt � Mt covariance matrix used at the transmitter,
log(�) is the base-2 logarithm, and det(AAA) denotes the determinant of
AAA. In the i.i.d. Rayleigh-fading scenario, the ergodic mutual informa-
tion subject to the same second-order constraint used to derive (1) is
defined by

CQQQ(�) � E [log det (IIIM + �HHHkQQQHHH
�
k)] (2)

where the expectation is taken over the distribution ofHHHk .
According to the assumed power constraint, the covariance EQQQ(k) =

E [xxxk(!)xxx
�
k(!)] is only constrained with respect to the transmit power

with tr(QQQ(k)) � 1. In this case, the mutual information given in (1)
is maximized if the vector xxxk has a complex Gaussian distribution,
with covariance matrix EQQQ(k) that is chosen by waterfilling over the
dominant eigenvectors of the MIMO channel HHHk with average power
constraint tr(QQQ(k)) � 1. This is also the case of full CSIT where the
channel state information is fully known to both the transmitter and
receiver (i.e., B = 1). This gives a waterfilling (or “informed trans-
mitter”) capacity assuming a fixed and deterministic channel of [30],
[31]

CIT (�;HHH) = max
QQQ:tr(QQQ)�1

log det(IIIM + �HHHQQQHHH�) (3)
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where IT denotes that the capacity assumes that the transmitter is “in-
formed” of the channel realization HHH . In this full channel knowledge
scenario, the ergodic capacity for i.i.d. Rayleigh fading is given by [30],
[31]

CIT (�) = E max
QQQ :tr(QQQ )�1

log det IIIM + �HHHkQQQ
(k)
HHH
�
k :

(4)
When the transmitter only has channel distribution information, the
ergodic capacity for the i.i.d. Rayleigh-fading scenario is given by [31]

CDIST(�) = max
QQQ:tr(QQQ)�1

E [log det (IIIM + �HHHkQQQHHH
�
k)] : (5)

If the channel has a Gaussian distribution with i.i.d. entries andB = 0,
the maximizing QQQ in (5) is [30]

QQQ =
1

Mt

IIIM ;

i.e., independent streams with equal average power transmitted over
the different antennas. For a fixed and deterministic channel realization
HHH , and when the transmitted signal has a complex vector Gaussian
distribution, the mutual information subject to the covariance constraint
QQQ = 1

M
IIIM , which is often called the uninformed transmitter case

[1], is denoted by CUT and is given by

CUT(�;HHH) � log det IIIM +
�

Mt

HHHHHH
�

: (6)

We are interested, however, in the nonextremum cases when 0 <

B <1. We assume that both the transmitter and receiver have a code-
bookQ = fQQQ1;QQQ2; . . . ;QQQNg of covariance matrices where N = 2B

and tr(QQQi) � 1, 1 � i � 2B . For each channel realization, B bits of
data, which correspond to the binary index of the covariance matrix in
the codebook Q that maximizes the expression given in (1), are trans-
mitted through the feedback link. The capacity of the system transmit-
ting over a fixed and deterministic wireless system using a limited rate
feedback channel and codebook Q is given by [3], [29], [32]

C
Q
Feed(�;HHH) = max

QQQ2Q
log det (IIIM + �HHHQQQHHH

�) :

When the channel is i.i.d. Rayleigh fading and we let the codebook
Q be generated randomly for each channel realization, the ergodic
channel capacity in this case is given by

CFeed(�) = E max
QQQ2Q

log det IIIM + �HHHkQQQHHH
�
k

where the expectation is over the distribution of HHHk and Q.
In general, the codebook Q can be designed using vector quanti-

zation techniques such as the Lloyd algorithm [3], [4]. Unfortunately,
these kinds of techniques are highly dependent on the distribution of
the channel and need to be redesigned each time the antenna configu-
ration or SNR changes. We will deal primarily with a codebookQ that
is generated randomly. We will assume that the entries in the codebook
Q are chosen independently according to the uniform distribution on
the set of all possible waterfilling matrices. In this case it is assumed
that a random codebook of covariance matrices is generated at each
channel realization and is revealed simultaneously to both the trans-
mitter and receiver. In practice, this type of random coding can be im-
plemented using similar techniques used in code-devision multiple-ac-
cess (CDMA) communication systems where both the transmitter and
receiver use randomly generated signature waveforms for the transmis-
sion of each information symbol [33].

Since it is assumed that the channel is i.i.d (or stationary and er-
godic) in time, an alternative way to think about the expectation over
the randomly generated codebook of covariance matrices, is to assume
the existence of an ensemble of feedback quantizers, where the expec-
tation is taken over this ensemble and in this case we have one realiza-
tion for each transmitted codeword. In this case Q stays fixed over the
transmission of a codeword and it does not change with each channel
realization.

Random coding techniques are commonly used in information
theory to prove the existence of codes in channel capacity proofs.
The idea is that if a randomly chosen code can provide a desired
level of performance then there exists at least one “good” code. Our
reasoning is the same. If a random feedback codebook can provide a
certain rate then one codebook can be found that will surpass this rate
performance. In Section III, we will probabilistically analyze this kind
of random codebook in order to understand the performance of MIMO
systems with limited feedback.

III. RANDOM CODEBOOKS

In this section, we are interested in analyzing a randomly generated
codebook with uniform distribution on the complex unit sphere. For a
given fixed point on the complex unit sphere, our goal is to derive an
expression for a metric defined on the space of allMt�Mt covariance
matrices. The metric definition that we consider in this paper is the
common Euclidean norm. The reason behind this interest will be shown
later in Section IV where we derive capacity loss bounds with this kind
of random coding technique.

In the following, we will consider MIMO limited feedback systems
that use a codebook Q that is chosen randomly for each channel re-
alization. Before we analyze this codebook distribution, we will first
have to characterize the power constraint properties of the covariance
matrices under consideration.

The general waterfilling optimization problem solves for the covari-
ance matrix QQQ with power constraint tr(QQQ) � 1 that maximizes the
expression in (1). Since this matrix is always a positive semi-definite
Hermitian matrix and we do not assume any temporal power control,
the power constraint inequality can be replaced with an equality. The
following lemma shows why this is true.
Lemma 1: Suppose thatQQQa is a MIMO covariance matrix with 0 <

tr(QQQa) = � < 1 and QQQb = ��1QQQa. Let HHH be an arbitrary Mr �Mt

complex matrix. For any SNR �

log det (IIIM + �HHHQQQaHHH
�) � log det (IIIM + �HHHQQQbHHH

�) :

Proof: Let �1; . . . ; �M denote the eigenvalues ofHHHQQQaHHH
�. We

know

log det (IIIM + �HHHQQQaHHH
�) =

M

i=1

log(1 + ��i):

Since the eigenvalues are nonnegative and since log is a monotonically
increasing function,

log det (IIIM + �HHHQQQaHHH
�) �

M

i=1

log 1 +
�

�
�i

= log det (IIIM + �HHHQQQbHHH
�) :

Therefore when generating random codebooks of covariance ma-
trices, we will restrict ourselves to the set of matrices defined in the
following. Let T denote the set of all Mt �Mt positive semi-definite
matrices. Our randomly generated codebook will consist of elements
from the set

TM = fQQQ j QQQ 2 T;QQQ
� = QQQ; rank(QQQ) �M; tr(QQQ) = 1g

where M = minfMt;Mrg.
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Let vec(�) be the operator which stacks the columns of an M �Mt

matrix into a column vector, and let unvec(�) be the reverse operator.
Interestingly, in the following it is shown how the set TM can be pa-
rameterized as a quotient space. A reference for quotient spaces can
be found in [34]. Intuitively speaking, the quotient space is the set of
classes of points which satisfy a certain equivalence relation. In other
words, in each class there is some relation that is true for all points in
that class. As an example, let the space of all n-dimensional unit norm
vectors be denoted by 
n. We define an equivalence relation between
any two unit vectors www1 2 
n and www2 2 
n by www1 � www2 if for some
� 2 [0; 2�) www1 = ej�www2 (www1 and www2 lie on the same line). The quo-
tient space in this case is the set of all one-dimensional subspaces in
the n-dimensional vector space.

Theorem 1: Let
MM denote theMMt-dimensional complex unit
sphere, and let U(M) denote the group of unitary M �M matrices.
Then, the set

TM = 
MM =U(M)

where the quotient space is defined with respect to the equivalence re-
lation www1 is equivalent to www2 if

unvec(www1)
�unvec(www1) = unvec(www2)

�unvec(www2)

with www1;www2 2 
MM . Moreover, there exists a one-to-one map f :

MM ! TM � U(M).

This theorem is proved in Appendix.
Corollary 1: Any covariance matrix QQQ 2 TM can be written as

QQQ = FFF �FFF where FFF = unvec(www) is the M � Mt matrix obtained
from a corresponding complex unit vector www 2 
MM .

This corollary follows directly from Theorem 1. Let kAk2 denote
the 2-norm of A that is defined as the maximum singular value of an
n � m matrix A. Then from the above corollary, a uniformly1 dis-
tributed random covariance codebookQ with cardinalityN = 2B can
be generated in the following way:

1) Generate a random complex Gaussian vector ��� withMMt i.i.d.
elements.

2) Let www be the normalized random vector ���, i.e., www = ���= k���k2.
3) Generate the M �Mt matrix FFF from unvec(www).
4) Set QQQi = FFF �FFF .
5) Repeat steps 1) to 4) for each 1 � i � N .
Given an arbitrary covariance matrixQQQ with tr(QQQ) = 1, we are in-

terested in finding a bound on the mean value of some distortion mea-
sure when a uniformly distributed random codebook is used. The dis-
tortion measure in this case is defined by the Euclidean distance (or the
Frobenius norm) between any two matrices. Hence, we should bound
the following:

E min
1�i�N

kQQQ�QQQikF (7)

where the minimization is over all codebook elements in Q that are
generated randomly as in steps 1)–5) above.

As we mentioned before, we are interested in MIMO communica-
tion systems employing feedback with quantized CSI, where for each
channel realization a random codebook is generated using a complex
spherical uniform distribution. The optimal codebook covariance ma-
trix index that maximizes the mutual information assuming i.i.d. com-
plex Gaussian signaling is sent over the feedback link. In order to an-
alyze the performance of such codebooks, we must bound the ergodic

1The distribution is uniform in the sense that it is generated by a Haar or
uniform distribution on the unit sphere.

capacity loss incurred by this type of codebook. First, we will look at
the average Euclidean distance of (7).
Lemma 2: Let 
k denote the k-dimensional complex unit sphere,

and let ��� be an arbitrary k-dimensional unit vector ��� 2 
k . Let us also
define the set of random variables

 i 1� j����wwwij2; 1 � i � N (8)

and

	 min
1�i�N

 i

where fwwwi; 1 � i � Ng is a set of N i.i.d. k-dimensional random
vectors with a uniform distribution on the complex unit sphere. The
probability density function of 	 is given by

f	(�) = 2N(k� 1)(1� �2(k�1))N�1�2(k�1)�1: (9)

Proof: By the above definitions

Prob(	 < �) =Prob

N

i=1

 i < �

=1� Prob

N

i=1

 i � � :

Since f i; 1 � i � Ng is a set of i.i.d. random variables

Prob(	 < �) = 1�
N

i=1

Prob( i � �)

= 1� [Prob( 1 � �)]N :

For an arbitrary unit vector ��� and www1 that is uniformly distributed on

k , we know that [6]

Prob( i < �) = �2(k�1); 1 � i � N: (10)

Therefore

Prob(	 < �) = 1� 1� �2(k�1)
N

; (11)

and by taking the derivative of the last expression with respect to � we
get (9).

Note that in the sequel it will be assumed that k = MMt.
Lemma 3: If AAA and BBB are any two M �Mt matrices

kAAA�AAA�BBB�BBBk
F

�
p
M kvec(AAA)vec(AAA)� � vec(BBB)vec(BBB)�k

F
: (12)

Proof: Let ajm denote entry (j;m) of AAA and bjm denote entry
(j;m) of BBB. Using this notation

kAAA�AAA�BBB�BBBk2F

=

M

m=1

M

n=1

M

j=1

a�jmajn � b�jmbjn

2

�
M

m=1

M

n=1

M

j=1

a�jmajn � b�jmbjn

2

�
M

m=1

M

n=1

M

M

j=1

a�jmajn � b�jmbjn
2

�M

M

m=1

M

n=1

M

j=1

M

k=1

a�jmakn � b�jmbkn
2

=M kvec(AAA)vec(AAA)� � vec(BBB)vec(BBB)�k2
F
:

For the distortion measure given in (7), we have the following the-
orem.
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p
2MN

� 2k�1
2k�2

�(N)

� 2k�1
2k�2

+N
�
p
2MN

� 2k�1
2k�2

p
2�(N � 1)(N� )exp(�N + 1)

p
2� N + 1

2k�2

(N+ + )
exp �N � 1

2k�2

<
p
2MN

� 2k�1
2k�2

N(N� )exp(�N + 1)

N(N+ + )exp �N � 1
2k�2

(17)

=
p
2M�

2k � 1

2k � 2
exp

2k � 1

2k � 2

N(N+ )

N(N+ + )
: (18)

Theorem 2: If QQQ is an arbitrary Mt � Mt positive semi-definite
matrix such thatQQQ 2 TM andQ = fQQQ1;QQQ2; . . . ;QQQNg is a uniformly
distributed random codebook

E min
1�i�N

kQQQ�QQQikF �
p
2MN

� 2k�1
2k�2

�(N)

� 2k�1
2k�2

+N
(13)

where N is the number of elements in the codebook, k = MMt, and
� is the Gamma function given by

�(x) =
1

0

tx�1e�tdt:

Proof: By the corollary of Theorem 1, let FFF and FFF i be defined
such that QQQ = FFF �FFF and QQQi = FFF �iFFF i. Thus,

kQQQ�QQQikF = kFFF �FFF � FFF �iFFF ikF :
Using Lemma 3

kQQQ�QQQikF �
p
M kvec(FFF )vec(FFF )� � vec(FFF i)vec(FFF i)

�k
F
:
(14)

Now let ��� = vec(FFF ) and wwwi = vec(FFF i), then the right hand side of
(14) is just the chordal distance [35], [36] between the column spaces
(i.e., lines) generated by two complex unit vectors ��� and wwwi scaled by
a factor

p
2M . Therefore

k������� �wwwiwww
�
i kF =

p
2 1� j����wwwij2: (15)

From Lemma 2

E min
1�i�N

kQQQ�QQQikF

� E min
1�i�N

p
2M 1� j����wwwij2

=
p
2M

1

0

xf	(x)dx

=
p
2M

1

0

x 2N(k � 1)

� (1� x2(k�1))N�1x2(k�1)�1dx: (16)

By the result in [37, p. 322, eq. 3.251], (16) can be expressed as

E min
1�i�N

kQQQ�QQQikF �
p
2MN

� 2k�1
2k�2

�(N)

� 2k�1
2k�2

+N
:

Note that the bound in (13) goes to zero as the number of bits used in
the codebook goes to infinity. This can be verified easily if we roughly
apply Stirling’s approximation for the� function yielding (17) and (18)
shown at the top of the page. If

�k � �
2k � 1

2k � 2
exp

2k � 1

2k � 2

then substituting (18) into (13) and 2B for N we get

E min
1�i�2

kQQQ�QQQikF �
p
2M�k2

�

� 4
p
2M 2� (19)

where the last inequality holds because �k is a monotonically de-
creasing function with k and �k < 4 for K � 2. As k ! 1, �k
approaches e. Therefore for any covariance matrix QQQ, a uniformly
distributed random code converges to QQQ according to the k�k

F
norm

exponentially with the number of bits at a rate that is at least 1
2k�2

for a fixed number k = MMt. Also, the above bound presents a very
intuitive result. In order to ensure the convergence of the randomly
generated codebook when the number of antennas at the transmitter or
receiver is increased, the number of feedback bits should be increased
by a factor which is less than or equal to 1

2k�2
.

IV. CAPACITY LOSS AND FEEDBACK RATE

In this section, we will derive expressions for the capacity loss asso-
ciated with 1) a mismatch in the transmit covariance and 2) a covariance
matrix designed using limited feedback.

A. Introduction to Capacity Loss

In general, the capacity loss depends on the amount of channel
state information at the transmitter or, in other words, the number of
feedback bits transmitted per channel realization. Theoretically the
amount of feedback is infinite when a complete CSIT is assumed,
and the amount of feedback is equal to zero when there is no CSI at
the transmitter. As we have mentioned earlier in the latter case when
the Gaussian channel model is considered, the ergodic capacity is
maximized by i.i.d. Mt streams of transmitted data. The amount of
capacity loss relative to the waterfilling performance due to this i.i.d.
suboptimal strategy was considered before and bounds on the capacity
loss where derived in [38], [39]. Using the results in [38], [40], it can
be shown that (when Mr � Mt)

CIT(�;HHH)� CUT(�;HHH) �Mte
�1 log e (20)

where CIT and CUT are given by (3) and (6), respectively. The above
bound is a universal bound on the capacity loss for any SNR and
channel realization. In [39], it was shown that in the high SNR regime
(when Mr � Mt)

CIT(�;HHH)� CUT(�;HHH) �Mt log 1 +
��1min � ��1max

�=Mt

(21)

where �min and �max are the minimal and maximal eigenvalues of the
matrix HHH�HHH , respectively. In this case the bound does depend on the
SNR and channel matrix HHH , and

lim
�!1

CIT(�;HHH)� CUT(�;HHH) = 0: (22)

Therefore, in the high SNR regime the optimal transmission strategy is
that of i.i.d. streams of data transmitted along each of the Mt transmit
antennas. In the following, we will derive a bound on the capacity loss
for the more general case when an arbitrary covariance matrix is used
instead of the optimal waterfilling matrix assuming no restrictions on
the number of transmit and receive antennas.
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We are interested in characterizing 1) the capacity loss in bits/s/Hz
when QQQ is used instead of QQQIT and 2) the average loss in bits/s/Hz
incurred from using B bits of feedback and a random codebook Q.
The capacity loss caused by a suboptimal covariance assuming a fixed
and deterministic channel HHHk = HHH is given by

�C
QQQ
(�;HHH) � CIT(�;HHH)� C

QQQ
(�;HHH):

The average capacity loss with feedback when using a random code-
book over an i.i.d. Rayleigh channel is given by

�C(�) � CIT(�)� E max
QQQ2Q

C
QQQ
(�;HHHk)

where the expectation is over bothHHHk and Q. Because of the linearity
of the expectation operator, the average capacity loss can alternatively
be written as

�C(�) = E min
QQQ2Q

�C
QQQ
(�;HHHk) : (23)

B. Capacity Loss Results

Before we state the main theorem on the ergodic capacity loss bound
we will need the following lemma.

Lemma 4: Let QQQIT denote the normalized covariance matrix ob-
tained from waterfilling and �Q�Q�Q � QQQIT � QQQ. The capacity loss is
bounded as

�C
QQQ
(�;HHH) � M

2
log

IIIM + JJJ�1���JJJ
2

F

M
(24)

where JJJ and ���JJJ are defined as

JJJ � IIIM + �HHH
�
HHHQQQ ; ���JJJ � �HHH

�
HHH�Q�Q�Q (25)

when Mt � Mr and

JJJ � IIIM + �HHHQQQHHH
�

; ���JJJ � �HHH�Q�Q�QHHH
� (26)

when Mt > Mr .
Proof: First note that in both cases (Mt � Mr and Mt > Mr)

the capacity loss can be written as

�C
QQQ
(�;HHH) = log

det(JJJ + ���JJJ)

det(JJJ)
= det IIIM + JJJ

�1
���JJJ : (27)

Now according to the Hadamard inequality [41], for any n� n matrix
AAA, it’s determinant is bounded as

det(AAA) �
n

j=1

n

i=1

jaij j2 (28)

where aij is the element of AAA corresponding to the ith row and jth
column of AAA. Therefore,

det(AAA) �
n

j=1

n

i=1

jaij j2

=

n

j=1

n

i=1

jaij j2
1=n n=2

�
n
j=1

n
i=1 jaij j2
n

n=2

=
kAAAk2F
n

n=2

(29)

where the inequality in (29) follows from the geometric-arithmetic
mean bound. Finally, substituting IIIM + JJJ�1���JJJ for AAA in (29) we
get (24).

Let � be defined as

� �
p
2MN

� 2k�1
2k�2

�(2B)

� 2k�1
2k�2

+ 2B
(30)

where this is merely the bound in (13) which is a function ofB and the
number of transmit and receive antennas. Also let

 � EHHH kHHHkk22 (31)

where k�k
2

is the matrix spectral norm. Then the following theorem
follows.
Theorem 3: The ergodic capacity loss with B bits of feedback is

bounded as

�C(�) �M log (1 + ��) (32)

where  and � are defined as in (30) and (31), respectively, and � is the
signal-to-noise ratio.

Proof: Let �i(AAA) denote the ith singular value of a matrix AAA,
then the bound in (24) can be written as

M

2
log

IIIM + JJJ�1���JJJ
2

F

M

=
M

2
log

M
i=1 �

2

i IIIM + JJJ�1���JJJ

M
: (33)

From [41, p. 423], we have the following inequality. For any n � n

matrix AAA = IIIn + BBB

�i(AAA) � 1 + �i(BBB): (34)

Therefore, from (33) and (34) we get (35) shown at the bottom of the
page. Now since

JJJ
�1

2
=

1

�M(JJJ)
� 1 (36)

�C
QQQ
(�;HHH) � M

2
log

M
i=1 �

2

i IIIM + JJJ�1���JJJ

M

� M

2
log

M
i=1 1 + �2i JJJ�1���JJJ + 2�i JJJ�1���JJJ

M

� M

2
log

M
i=1 1 + JJJ�1

2

2
k���JJJk2

2
+ 2 JJJ�1

2
k���JJJk

2

M
: (35)
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where �M (JJJ) is the minimum singular value of JJJ

�C
QQQ
(�;HHH) � M

2
log

M

i=1

1 + k���JJJk
2

2

M

=M log 1 + k���JJJk
2
: (37)

Furthermore, when Mt � Mr or Mt > Mr

k���JJJk
2
� � kHHHk2

2
k�Q�Q�Qk

2
� � kHHHk2

2
k�Q�Q�Qk

F
: (38)

Taking the expectation of (37) as in (23) gives (39)–(42) shown at the
bottom of the page, where (39) follows from Jensen’s inequality for a
concave function, (41) follows from (19), and (42) uses Jensen’s in-
equality again.

Corollary 2: The ergodic capacity loss is bounded as

�C(�) �M log 1 + �k
p
2M�MtMr2

� (43)

where

�k � �
2k � 1

2k � 2
exp

2k � 1

2k � 2
:

This corollary follows from Theorem 3, the bound in (19), and by
noting that EHHH kHHHkk22 can be bounded as

EHHH kHHHkk22 � EHHH kHHHkk2F =MtMr

where the equality follows sinceHHHk consists of MtMr i.i.d. elements
with zero mean and unit variance.

Note that according to (43) when the system has a large feedback
capacity where B � Mt or when the signal-to-noise ratio is small

�C(�) � �k
p
2M log(e)�MMtMr2

�

:

Therefore, the capacity loss decreases to zero exponentially with the
number of bits for any value of SNR and number of transmit and receive
antennas.

Let us recall that according to our assumption, the covariance matrix
QQQ is chosen from a randomly generated codebook such that it maxi-
mizes the expression of the mutual information in (1). Thus, for each
channel use a codebook Q = fQQQ

1
;QQQ

2
; . . . ;QQQNg is randomly gen-

erated where it is revealed to both the transmitter and the receiver (at
zero cost), and the argument which maximizes the mutual information

of the channel is transmitted over the feedback link. In general how-
ever, we are interested in a uniformly distributed random codebooks
on the complex unit sphere. As mentioned earlier, the main reason for
this is the optimality in a MISO system employing a covariance adapta-
tion technique [13] and the robustness in a situation where the channel
has rapidly changing statistics. However, another important reason for
considering such uniform complex spherical distributions is the com-
putational simplicity. If we take a look at (11), the cumulative distri-
bution function (cdf) of the random variable 	 is independent of the
arbitrary chosen vector ���, which implies that the mean can be taken
over the randomly generated codebook and the result will be indepen-
dent of the channel realization.

If we look more carefully at the exponential term in the capacity
loss bound, we can easily conclude that given a fixed bit rate B, the
number of transmit antennas is more crucial than the number of receive
antennas in terms of the convergence rate. As we can see, increasing
the number of receive antennas will have an effect on the convergence
rate only when Mr is less or equal to Mt. Because the number of
transmit antennas always have the same degradation effect on the con-
vergence rate, an increased number of bits is needed for any addition
in the number of transmit antennas in order to keep the convergence
rate fixed. In general, this is true because waterfilling is only a function
of the M channel singular values. When Mr � Mt, the number of
receive antennas factors into reducing the dimensionality of the quan-
tization problem. However, whenMr �Mt, the dimensionality of the
problem is entirely specified by Mt.

From Corollary 1 of Theorem 1, we know that every covariance ma-
trix in the set fQQQi 2 TM ; 1 � i � Ng can be written as

QQQi =
GGG�iGGGi

kGGGik2F
(44)

whereGGGi is an M �Mt complex Gaussian matrix. Also, let �i denote
the condition number of the matrix GGGi and

� �
N

min
i=1

�i: (45)

Then we have the following theorem.
Theorem 4: Let � be the minimal condition number as defined in

(45) and assume that Mr � Mt. In the high SNR regime, the ergodic
capacity loss is bounded as

�C(�) � 2(Mt � 1)E [log �] (46)

when � ! 1.

�C(�) =EHHH EQ min
QQQ2Q

�C
QQQ
(�;HHH) j HHHk = HHH

�MEHHH EQ min
QQQ2Q

log 1 + � kHHHk2
2
k�Q�Q�Qk

F
j HHHk = HHH

�MEHHH log 1 + �EQ min
QQQ2Q

kHHHk2
2
k�Q�Q�Qk

F
j HHHk = HHH (39)

=MEHHH log 1 + � kHHHkk22EQ min
QQQ2Q

k�Q�Q�Qk
F
j HHHk = HHH (40)

�MEHHH log 1 + � kHHHkk22 � (41)

�M log 1 + �EHHH kHHHkk22 � (42)
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Proof: According to (22), in the high SNR regime the informed
and uninformed transmitter capacities coincide. Therefore, the optimal
waterfilling capacity in this case can be approximated by

CIT(�;HHH) � log det IIIM +
�

Mt

HHH
�

HHH (47)

and the capacity loss in this case is given by

�CQQQ (�;HHH) � log det IIIM +
�

Mt

HHH
�

HHH

� log det (IIIM + �HHH
�

HHHQQQi)

� log det
�

Mt

HHH
�

HHH � log det (�HHH�HHHQQQi)

where QQQi 2 TM is an arbitrary covariance matrix generated from a
corresponding M �Mt matrix GGGi according to (44). Now assuming
that the matrix HHH�HHH is full rank (i.e., Mr � Mt) then,

�CQQQ (�;HHH)�!1 = Mt log
1

Mt

� log det (QQQi) : (48)

The determinant of QQQi can be lower bounded as follows:

det (QQQi) = det
GGGi

kGGGikF

2

=
det (GGGi)

kGGGik
M

F

2

and from the fact that kGGGik
2
F
= M

i=1 �
2
i , where �i, 1 � i �Mt, are

the singular values of GGGi

det (QQQi) �
jdet (GGGi)j

2

M
M
t �

2M
1

=
�
�2(M �1)
1 �22 � � ��

2
M

Mt
M

�
�
�2(M �1)
1 �

2(M �1)
M

Mt
M

=
1

MM
t

�M

�1

2(M �1)

: (49)

Therefore, in the high SNR regime

�CQQQ (�;HHH)�!1 �Mt log
1

Mt

� log
1

MM
t

1

�i

2(M �1)

=2(Mt � 1) log(�i):

Finally, (46) follows from the fact that log is a monotonic function and
the minimal capacity loss taken over the different codebook elements
is upper bounded by

2(Mt � 1)
N

min
i=1

log(�i):

As we can see, in the high SNR regime the bound does not depend on
� or the channel realization, but it does depend on Mt and the minimal
condition number of the set of matrices fGGGi; 1 � i � Ng. Also,
when log � is equal to zero the capacity loss is equal to zero. In this
case at least one of the matrices fGGGi; 1 � i � Ng (up to a scaling
factor) must be a unitary matrix which is the case when the identity
matrix is included in the codebook. In general, for an arbitrary number
of transmit and receive antennas, a simple closed-form expression for
the expectation in (46) is difficult to achieve. However, in the following
theorem we give the result for any system employing 2�Mr antennas.

Theorem 5: For a system employing 2�Mr antennas whereMr �
2, the ergodic capacity loss in the high SNR regime is bounded as

�C(�) � 2N log(e)

N

k=0

N

k
3k

�
2F1(3N; 3N � 2k; 3N � 2k + 1;�1)

3N � 2k

where N is the size of the randomly generated codebook with uniform
distribution on the complex unit sphere and 2F1(�; �; �; �) is the Gaussian
Hypergeometric function.

Proof: Based on the results in [42], the probability density
function of the condition number of a randomly generated complex
Gaussian matrix with 2� L i.i.d. elements is given by

f(x) = 2
�(2L)

�(L)�(L� 1)

x2L�3(x2 � 1)2

(x2 + 1)2L
: (50)

The probability density function of � the minimal condition number of
N complex Gaussian random matrices is therefore given by

f
�
(x) = N(1� F (x))N�1f(x)

where F (x) is the cumulative distribution function of the condition
number of a random complex Gaussian matrix. From integration by
parts we get

E [log �] = log(e)
1

1

ln(x)f
�
(x)dx

= log(e)
1

1

(1� F (x))N

x
dx:

For the case when Mt = 2, then by (50)

1� F (x) =
2 + 6x4

(1 + x2)3

and

E [log �] = log(e)
1

1

(2 + 6x4)N

x(1 + x2)3N
dx

=2N log(e)

N

k=0

N

k
3k

�
1

1

x4k�1

(1 + x2)3N
dx: (51)

Now after a change of variable

1

1

x4k�1

(1 + x2)3N
dx =

1

2

1

0

(1 + u)2k�1

(2 + u)3N
du

and by [37, p. 315, eq. 3.197.9], we finally get

E [log �] = 2N�1 log(e)

N

k=0

N

k
3k

�
2F1(3N ; 3N � 2k; 3N � 2k + 1;�1)

3N � 2k
: (52)

According to this result, the ergodic capacity loss bound is a function
of the codebook cardinality only, and by simulation results it will be
later shown how this capacity loss scales exponentially with the number
of feedback bits used to generate the codebook. As mentioned before,
since in the high SNR regime the informed and uninformed transmitter
capacities coincide, and from the waterfilling algorithm [1], [30], [39],
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Fig. 1. Numerically simulated scaled capacity loss and the analytically derived bound on the ergodic capacity loss for two different antenna system configurations
operating at an SNR of �5 [dB]. Note that the numerical simulation displays an exponential decrease in B.

[43] we know that asymptotically the transmitted power on the dif-
ferent eigenmodes of the channel are equal, the optimal waterfilling
covariance matrixQQQ

IT
will converge to 1

M
IIIM as �!1 for all full

rank channels when Mr �Mt. Hence, in order to reduce the capacity
loss especially in the high SNR regime, the covariance matrix 1

M
IIIM

should be included in the codebook Q. Including 1

M
IIIM allows 1)

the robust signaling bound in (20) to be used to obtain an upper bound
on the ergodic capacity loss and 2) means that the codebook will be
asymptotically optimal.bb

V. DISCUSSION

In this section, we will address several issues relating to the above
analysis.

A. Feedback Overhead Calculations

One possible application of the capacity loss-feedback rate tradeoff
analysis is to the design of feedback rates in two-way communica-
tion. This kind of analysis was recently initiated in [44], [45] where
CIT(�) � CUT(�) determines what benefits feedback could provide
over open-loop transmission.

Following the model in [44], [45], consider an Mt = Mr = M
two-way symmetric MIMO model where information is transmitted
at the same rate on each side of the link. In addition, assume that the
forward and reverse links fade independently and that feedback must
be conveyed every Tc seconds. This necessitates a feedback rate of at
least B=Tc bits/second. Therefore, for feedback to be beneficial, we
must minimize

�C(�)�
B

�Tc

where� is the bandwidth of the system. The factor�Tc can be thought
of as a feedback penalty term. The feedback rate will be highly depen-
dent on �Tc.

B. Application to Other Channel Models

In the derivations we made in the last section, we assumed that the
channel matrix consists of MtMr i.i.d. entries. However, this is not

necessary. The ergodic capacity loss bound given in Corollary 2 is also
true for any channel matrix with entries having variance less than or
equal to one. The only assumption we needed in the above proof was
that the variance is less than or equal to one for all entries since

E kHHHkk
2

F
=

M

i=1

M

j=1

E hki;j
2

�MtMr

if E hki;j
2

� 1. Hence, our result can be easily generalized for any
channel with any distribution including correlated fading channels. If
we normalize the channel matrix HHH such that all of its entries having
variance less or equal to one, we can always use the bound derived and
the result remain true. Furthermore, the high SNR ergodic capacity loss
bound given in Theorem 4 is always true if the channel matrix is full
rank (this includes correlated channels with full rank) withMr �Mt.

VI. SIMULATION RESULTS

In this section, we consider the flat Rayleigh fading MIMO channel.
The channel matrixHHHk in this case consists of i.i.d. complex Gaussian
entries hi;j with zero mean and unit variance. For this type of channel,
we compute the capacity loss incurred by the uniform spherically dis-
tributed random codebook which is generated according to the steps
given in Section III.
Capacity Loss versus Feedback Rate: Theorem 3 showed that the loss

in capacity decreases exponentially with the number of feedback bits.
Figs. 1 and 2 demonstrate this scaling result for two different antenna
system configurations operating at SNR values �5 and 0 dB, respec-
tively. In both figures, we consider 2 � 1 and 3 � 1 antenna systems.
Both numerical simulations and the derived bound in Theorem 3 are
presented. Note that the demonstrated results are scaled by the optimal
waterfilling capacity. First, from the figures we note that the capacity
loss decreases exponentially with the number of feedback bits, and as
expected from Theorem 3, the scaling in the capacity loss strongly de-
pends on the number of transmit antennas. We also note that in general
the ergodic capacity loss bound is fairly tight, and since the slopes of
the two curves are similar we can conclude that the derived bound es-
timates the exponential decay rate as a function of the number of bits.
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Fig. 2. Numerically simulated scaled capacity loss and the analytically derived bound on the ergodic capacity loss for two different antenna system configurations
operating at an SNR of 0 [dB]. Note that the numerical simulation displays an exponential decrease in B.

Also, by comparing Figs. 1 and 2 the ergodic capacity loss bound tends
to be less tight as the SNR is increased. One reason for this behavior can
be explained by investigating the capacity loss bound in (43), where it
can be easily shown that when the SNR is large and the communica-
tion system employs a low resolution feedback link, i.e., the number of
feedback bits is of the order of MMt, the ergodic capacity loss bound
decays only linearly with the number of feedback bits. It should be also
noted here that in the special case of Mr = 1, a tighter upper bound
in the exponent (i.e., larger decay rate as a function of the number of
feedback bits) of (43) was found in [46].

Random versus Lloyd Codebooks: Prior work [3], [4] has considered
vector quantization techniques for generating covariance codebooks.
Given the size of the codebook N , we generate N � 1 random covari-
ance matrices from the uniform distribution on the complex unit sphere,
and we let the identity matrix 1

M
IIIM 2 TM be theN th element in the

codebook. The reason for the inclusion of the identity matrix has been
mentioned in Section IV, and it should improve the performance of the
randomly generated codebook especially in the high SNR regime. For
this type of channel and random codebook we compute the average ca-
pacity as a function of the SNR using a Monte Carlo simulation. We
also compare with the average capacity obtained using the determin-
istic codebooks designed by the vector quantization Lloyd algorithm
as proposed in [3], [4].

We first consider a two transmit and two receive antenna system
using codebooks with cardinalityB = 1; 2; 3; and 4 bits. The results of
the average capacity loss for both quantized covariance feedback trans-
mission schemes are shown in Fig. 3. Interestingly, as we can see from
Fig. 3, for SNR values which are approximately above 5 dB, the uni-
form spherically distributed random coding method, achieves a better
performance compared to the Lloyd based codebook design. This re-
sult is true for all the sizes of the codebooks used in the simulations,
and the superiority of the random coding method becomes more evi-
dent as the size of the codebook increases. Note that the random code-
book technique was simulated to include 1

M
IIIM 2 Q. According to

(22), this is supposed to give asymptotic performance improvements.
Our results show that the inclusion of the identity matrix in the uni-

form spherically distributed random codebook as mentioned above, is
the cause for such superior performance. The random codebook per-
formance benefits would be greatly reduced if an optimal, but compu-
tationally complex, Lloyd codebook design was conducted. We opti-
mized the Lloyd designed codebook over 10 000 channel realizations
beginning from ten different initial codebooks. For SNR values below
5 dB, the Lloyd feedback scheme achieves a higher system capacity.
Capacity Loss versus Feedback Rate in the High SNR Regime: As

mentioned above, when the SNR is large and the communication
system employs a low resolution feedback link, the ergodic capacity
loss bound decays only linearly with the number of feedback bits.
Therefore, it is expected that in this case the ergodic capacity loss
bound given in (32) will be overbounded for reasonable values of
B. In order to remedy this problem we can use the derived bound in
Theorem 5. In this case the bound is only a function of the number of
feedback bits used to generated the different codebook elements. In
Fig. 4, the high SNR ergodic capacity loss bound given in Theorem 5 is
plotted for a two transmit and two receive antenna system operating at
an SNR of 20 dB. The bound is plotted versus the number of feedback
bits. On the same figure, the true capacity loss and the ergodic capacity
loss bound from Theorem 3 are also plotted, and for comparison
the uninformed transmitter capacity loss bound given in (21) is also
plotted on the same figure.

As we can see from the figure, the high SNR bound is tighter, and
it demonstrates an exponential decrease with the number of feedback
bits. A similar simulation was performed for a system employing three
transmit and three receive antennas and the results are shown in Fig. 5.
From Fig. 4 we can see that forB � 8 the ergodic capacity loss bound
is less than the uninformed transmitter capacity loss bound. From the
above figures it is also clear that the ergodic capacity loss bound is over-
bounded for this range of feedback bits, whereas the high SNR bound
is relatively tight and attains an exponential decrease with the number
of feedback bits. Finally, in the high SNR regime we can improve on
the capacity loss by letting 1

M
IIIM be one of the elements in the code-

book and generating theN � 1 other covariance matrices randomly as
before.
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Fig. 3. Uniform distribution complex unit sphere random coding versus Lloyd quantized codebook for a two transmit and two receive antenna system.

Fig. 4. Numerically simulated scaled capacity loss and the analytically derived high SNR bound for a two transmit and two receive antenna system operating at
an SNR of 20 dB.

VII. CONCLUSION

In this paper, we considered the MIMO channel with quantized
channel state information. For any covariance matrix with power
constraint equal to one, we found that it can be generated from a

corresponding vector on the complex unit sphere. Given an arbitrary
covariance matrix, we bound the mean of the covariance error norm,
when a uniform spherically distributed random codebook is con-
sidered, by finding the probability density function for the chordal
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Fig. 5. Numerically simulated scaled capacity loss and the analytically derived high SNR bound for a three transmit and three receive antenna system operating
at an SNR of 20 dB.

distance between an arbitrary complex unit sphere vector and a
uniform randomly generated vector on the complex unit sphere.

For a randomly generated codebook with uniform distribution on the
complex unit sphere we derived a bound on the ergodic capacity loss
as a function of the number of feedback bits. We have also shown that
this bound decreases as O 2�B=(2MM �2) for B bits of feedback.
For a communication system operating in the high SNR regime with a
low resolution feedback link, we derived a bound which is a function
of the minimal condition number of N randomly generated Gaussian
matrices. In this case, we also derived a closed-form expression for the
ergodic capacity loss bound in a system with two transmit antennas and
any number of receive antennas which is greater than or equal to two.

In the case of flat-fading Rayleigh MIMO channel, it was found ac-
cording to simulation results that for SNR values above 5 dB, a uniform
spherically distributed random codebook which includes the identity
matrix is comparable in terms of the average capacity loss to a Lloyd
deterministic codebook designed under practical design methods.

One piece of future analysis that would be interesting is to consider
the time-varying power allocation strategy using the long-term power
constraint discussed in [47]. In this correspondence, power is not al-
lowed to be allocated in time to adjust to channel conditions. Removing
this restriction could substantially improve performance. It is unclear
how the capacity loss scaling as a function of the feedback amount
would be affected. It is also of interest to understand the exact behavior
of the asymptotic slope of the capacity loss as a function ofB. Our anal-
ysis provides a bound on this slope, but this bound can be improved
upon in the case of a single receive antenna [46].

This work actually opens up a new area of information theory that
bridges traditional rate-distortion theory and channel capacity theory.
We were able to generate a rate-distortion-like curve where rate refers
to feedback rate and distortion refers to capacity loss. As limited rate
feedback becomes important to industry, as currently being witnessed
in the IEEE 802.16E and IEEE 802.11N standards bodies, it will be
imperative to understand if the benefits of feedback outweigh the as-
sociated problems. One exciting area of future work is to analyze the
feedback benefits when the transmitter already has some form of sta-

tistical or partial channel knowledge at the transmitter (see for example
[48], [49]). A large number of open problems remain.

APPENDIX

PROOF OF THEOREM 1

We will prove this theorem in several steps.
Lemma 5: Every matrix in TM can be written as FFF �FFF ,

where vec(FFF ) is an MMt-dimensional unit vector. In addition,
each vector www 2 
MM generates a matrix QQQ 2 TM where
QQQ = unvec(www)�unvec(www).

Proof: Each matrix QQQ in TM can be defined by its eigenvalue
decomposition

QQQ = UUU���2UUU�

where ���2 has only M possible nonzero diagonal entries, ��� is the cor-
respondingM �Mt diagonal matrix with entries which are the square
roots of the nonzero eigenvalues, and UUU is a Mt �Mt unitary matrix.
LetFFF = ���UUU�. By the power constraint we must have that tr(FFF �FFF ) =
vec(FFF )�vec(FFF ) = 1. From this analysis, it is obvious that for any
www 2 
MM we have that tr (unvec(www)�unvec(www)) = 1 and thus
unvec(www)�unvec(www) 2 TM .

Now we prove Theorem 1.
Proof: From Lemma 5, it is obvious that if we left multiply the

matrix FFF = ���UUU� by any unitary matrix VVV 2 U(M), we still get the
same result, i.e.

QQQ = (VVV FFF )�(VVV FFF ) = FFF �VVV �VVV FFF = FFF �FFF :

Define an equivalence relation on 
MM such thatwww1 is equivalent to
www2 if

unvec(www1)
�unvec(www1) = unvec(www2)

�unvec(www2):

It follows from this that TM is equal to the quotient space

MM =U(M). Let www denote an arbitrary vector in 
MM and
WWW = unvec(www). For the one-to-one mapping, let the singular-value
decomposition of any matrix WWW = unvec(www) with www 2 
MM be
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denoted as WWW = VVV���UUU�. The singular value decomposition by itself
is not unique, but the matrix FFF = ���UUU� (or equivalently the matrix
QQQ = FFF �FFF ) is unique given a left singular matrix realization VVV . There-
fore we can define a unique mapping from 
MM to (TM ; U(M)).
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