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Abstract

In this paper, we consider two different models of partial channel state information (CSI) at the
basestation for multiple antenna broadcast channels: i.) the shape feedback model where the normalized
channel vector of each user is available at the basestation and ii.) the limited feedback model where
each user quantizes its channel vector according to a rotated codebook which is optimal in the sense of
mean square error and feeds back the codeword index. The paper is focused on characterizing the sum
rate performance of both zero-forcing dirty paper coding (ZFDPC) systems and channel inversion (Cl)
systems under the given two partial basestion CSI models. Intuitively speaking, a system with shape
feedback loses the sum rate gain of adaptive power allocation. However, shape feedback still provides
enough channel knowledge for ZFDPC and CI to approach their own optimal throughput in the high
SNR regime. As for limited feedback, we derive sum rate bounds for both signaling schemes and link
their throughput performance to some basic properties of the quantization codebook. Interestingly, we
find that limited feedback employing a fixed codebook leads to a sum rate ceiling for both schemes for

asymptotically high SNR.
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I. INTRODUCTION

Because of the need for high data rate multi-user systems, it is imperative to understand how to leverage
multiple antenna technology to increase the data rate and user capacity of wireless networks. Broadcast
channels model the situation where a basestation is sending information to a number of users (receivers)
[1]. Simple examples of broadcast channels include the downlink in a cellular network and the broadcast
scenario in a wireless local area network (LAN) where the access point is transmitting to multiple users.

In recent years, broadcast channels with multiple antennas installed at the basestation have received
significant research interest because of their spectral efficiency improvement and potential for commercial
application in wireless systems [2]. It was shown in [3]-[6] that the multiple antennas at the basestation
provide a sum rate capacity increase that grows linearly with the minimum of the number of transmit
antennas and users. The resulting sum rate advantage can be achieved through dirty paper coding [7] which
eliminates the cross user interference at the transmitter side assuming perfect channel state information
(CSI) is available at the basestation. Besides these information theoretic results, there has also been
some work recently in the area of practical signaling for the multiple antenna broadcast channel. For
example, [8] studied zero-forcing beamforming methods for the downlink of multi-user multiple-input
multiple-output (MIMO) channels. Peelt al. proposed the regularized channel inversion (Cl) scheme
and combined this technique with vector perturbation [9], [10]. Another interesting research topic for
the multiple antenna broadcast channel is multi-user scheduling (selection). Recent progress on this topic
showed that by judiciously selecting the active user set, the optimal throughput scaling can be achieved
by even suboptimal signaling schemes, such as CI, when the number of users is very large [11]-[13].

For multiple antenna broadcast channels, when the basestation does not have any channel knowledge,
the sum rate loss compared to the case that the basestation has perfect CSI is substantial. In fact, the
optimal transmission scheme for the basestation without any CSI is to transmit to a randomly selected
user during each time slot. In this case, the sum rate does not even grow either as the number of
antennas increases or as the number of users increases (no multi-user diversity gain). While the perfect

CSl assumption for the basestation can be argued in the case of a time division duplexing (TDD) system,
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the assumption is highly unrealistic for frequency division duplexing (FDD). Some recent multi-user
scheduling algorithms only require partial CSI at the basestation to maintain full sum rate growth when
the number of users is large [11], [14], [15]. However, it is still not clear what kind of partial channel
knowledge is essential for multiple antenna broadcast systems to obtain the sum rate advantage.

The benefits of designing a point-to-point multiple antenna signal using some form of partial CSI has
received much interest over the past few years. Several different models for partial channel knowledge have
been proposed and analyzed, including the statistical partial CSI model [16]-[19], the channel subspace
model [20], and the limited feedback model [21]-[30]. However, for multiple antenna broadcast channels,
the partial CSI problem is not as well addressed as in the single user MIMO case. Recent progress on
this topic can be found in [14], [15], [31]-[34].

In this paper, we consider two different kinds of partial CSI at the basestation for multiple antenna
broadcast channels and focus on the setting where the basestation has multiple antennas and each mobile
has a single antenna due to size and battery constraints. The first model considered is shape feedback.
In the shape feedback model, the basestation is able to obtain the normalized channel vector, i.e., the
shapé, of each user. Even though it is simple, the shape feedback model is especially helpful for us
to understand the throughput sensitivity on the channel gain knowledge for multiple antenna broadcast
channels. In many practical systems, the basestation can have unreliable or even unobtainable channel
gain values but reliable channel shape information of each user. For example, when analog feedback [35]-
[37] is used in an FDD system, the magnitude value at the basestation is usually outdated much faster
than the shape information. This is because the shape vector mainly captures the directional knowledge
of paths, which usually varies much more slowly than the amplitude of the channel, especially in the
outdoor scenario [38]. Also the channel gain in an analog feedback system might be unusable because
the system gains in the feedback channel are often not well calibrated. Furthermore, if blind channel

estimation is combined with channel reciprocity at the basestation of a TDD system, the channel gain

*Any nonzero vectom € R™ can always be decomposed into a ghis| which is a scalar and a shapg/||a|| which is a

vector on the unit sphere @t".
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knowledge is usually unobtainable due to the amplitude ambiguity nature of the blind methods [39].

The general limited feedback model is also considered. In this model, CSl is conveyed from each user
to the basestation over a feedback channel. The basestation and the users have access to a CSI codebook
which is designed offline. Each user sends the binary index of the best codevector from the codebook
through a zero-error, zero-delay feedback channel to the basestation. We note that this finite rate partial
CSI model was independently studied in [40] for the channel inversion scheme. Here a limited feedback
framework designed for multiple antenna broadcast systems is first proposed. The key differences between
our scheme and the limited feedback for single user MIMO channels are the following:

1) For multiple antenna broadcast channels, each receiver only knows its own channel instead of the
full (i.e. all users’) CSI and the users cannot cooperate. Each user is unable to obtain the optimal
precoding or beamforming structures which are computed from the full CSI. Therefore, in our
scheme, vector quantization is applied to the channel vector itself instead of to the beamforming
vector or precoding matrices, which is usually the case for single user MIMO systems where the
receiver has full CSI [41];

2) The codebook of each user should be different from others. Otherwise, there is a chance that two
or more users quantize their channel vectors to the same codevector which will cause a rank loss in
the quantized channel matrix composed by those codevectors. To avoid this situation, we let every
user rotate a general codebook by a random unitary matrix that is also known at the basestation
so that the CSI matrix at the basestation is full rank with probability one. Also under Rayleigh
fading, the randomly rotated codebooks used by different users are all equivalent in the sense of
average quantization error.

For these two partial CSI models, two widely accepted transmission schemes are considered: i.) the
asymptotically optimal zero-forcing dirty paper coding (ZFDPC) scheme and ii.) the channel inversion
(Cl) method that is suboptimal but more practical. By characterizing the sum rate performance of the
two partial CSI models for the given signaling schemes, we find that these two kinds of partial CSI

result in quite different throughput performance. It is shown that for the high SNR regime, ZFDPC with
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shape feedback is asymptotically optimal in the sum rate sense. When the Cl scheme is used with shape
feedback, we give a simple but effective power allocation strategy that provides sum rate performance
better than perfect CSI channel inversion with equal power allocation. Simulation results further show
that it is very close to the maximum achievable sum rate for Cl which requires perfect CSI and adaptive
power allocation.

For the limited feedback case, the mismatch between the quantized channel vectors available at the
basestation and the exact channel vectors results in additional cross-user interference for both ZFDPC
and channel inversion. We derive bounds for the sum rate performance of limited feedback under these
two transmission schemes. These bounds link the throughput performance with some basic properties of
the codebook and provide important insights into the impact of the use of limited feedback. From these
bounds, we find that both signaling schemes experience sum rate ceilings for a fixed size codebook as
the SNR increases.

Throughout this paper, we uge)” to denote the transposé,” the conjugate transposg{-} the
expectation and-)* the complex conjugater (A) means the trace of matrid, anddiag (a) denotes
the diagonal matrix whose diagonal line is composed by the elements of vectar)! represents the

ith row vector ofA .

Il. SYSTEM OVERVIEW
A. Channel Model

Consider a broadcast channel consisting of rantenna basestation ard single-antenna users.
Assuming that the channel is flat-fading, the discrete-time complex baseband signal received by user

at a given time slot is

yi = hl @+,
where h! = [h;1,...,h; ] is the channel fading vector between the basestation andtlthaser,
x = [r1,...,zy]7 is the transmitted signal, and is the zero mean complex white noise with variance

one. We assume independent and identically distributed (i.i.d.) Rayleigh fagdirng CN (0, I ) where
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Iy is anN x N identity matrix andIE{hihf} = 0 if i # j. By stacking the received signals of dl

users intoy = [y1, 4o, . ..,yx]", we have
y=Hx+wv QD

where H = [hy,...,hg]T andv = [v1,...,vx]". The model (1) looks the same as a single user
MIMO channel, but the key difference is that the receive antennas cannot cooperate with each other in
the broadcast scenario. Usepnly sees its own received signgl. As a consequence, usecan only
obtain the state information of its own channel whichhisin this case.

Generally the number of the usekS is greater than the number of the transmit antenNashat i
K > N. As we have mentioned, how to select the appropriate users for transmission under some sort
of CSI knowledge is an important subject and deserves its own treatment. We leave this topic for future
work and focus on the system setting whdte= N. This can be understood as the scenario where
N users are chosen randomly according to a uniform distributidd if N. The channel matrix{ is
assumed to be full rank in the following part of the paper (this happens with probability one given i.i.d.
Rayleigh fading). We also omit the user ordering issue which does not affect the performance of channel
inversion and the asymptotic sum rate for ZFDPC [3].

The system sum rate is defined as

where R; is the transmission rate between the basestation andttiheser. It is measured in bits per
channel use (or bits/s/Hz) in this paper. We focus on the ergodic sum rate for time-varying channels,
which means the sum rate is averaged over all the channel states according to the channel distribution.
This ergodic sum rate can be approached by a fixed rate scheme which codes across a long time period
during which the channel experiences the ergodic states according the distribution. In this case, the
channel fading is fast enough so that the channel state changes ergodically during the transmission of

one codeword.
2When K < N, there is a loss in the transmission degree of freedom [9].
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The following power constraint is applied to the transmitted signal
E {|lz[|*} = P )

where|| - || is the Euclidean norm ang& is the maximum total transmit power over one time slot. Since

the noise power is normalized to ong,also represents the SNR.

B. Zero-Forcing Dirty Paper Coding

The sum rate capacity of multiple antenna broadcast channels is achieved through dirty paper coding
at the basestation. The optimal dirty paper coding capacity involves a joint optimization over a set
of covariance matrices under a chosen power constraint, which is too complex for implementation. In
[3], a relatively simple ZFDPC scheme is proposed and is shown to provide an optimal throughput for
asymptotically large SNR.

In the ZFDPC scheme, the basestation collects the perfect channel knowedgd then decomposes
it into

H=GQ
whereG is a K x N lower triangular matrix and) is an N x N unitary matrix under the assumption
that H is full rank. Applying Q*! to the original source signal = [s1,...,sy]” as a precoding matrix
gives a transmitted signal

x=Q"s
and the input-output relationship for thh user

vi = giisi + Y _ 6ijSj + vi, (3)
j<i

whereg;; is the (i, j) element inG. By treatinngQ gijs; as the known interference and judiciously

generatings; according to dirty paper coding, the$é cross interfering subchannels have the same

capacity asV parallel Gaussian channels with fading gaips i = 1,..., N. The resulting sum rate is

N
Rdpe _ ZE {10g2 (1 + \gz‘z"2Pz‘)} “)
=1
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where P; is the power allocated to usérand satisfiestV:1 P, = P.

The maximum sum rate is achieved through waterfilling power allocation with a sum rate of

N
Rpex — ZE [logz (M|gii|2)}+

=1

where is the solution of the waterfilling equatioEfil[u —19ii|7%]+ = P. The sum rate under equal

power allocation is also of interest to us

N
Rire—eq _ ZE {log, (14 |gs|>P/N)} .
=1

C. Channel Inversion Scheme

Channel inversion, which is also called zero-forcing beamforming, is suboptimal but easy to implement
compared to dirty paper coding based schemes. It decouples the channel into orthogonal subchannels
with linear precoding. Since we assumhie= N, the channel matrixd has full rank with probability

one under i.i.d. Rayleigh fading. The precoding matrix is the direct inverse of the chavitieh gives
x=H's.

The effective input-output relation is just a set8fadditive white Gaussian noise subchannels without
fading

y=Hx+v=s+w.

Just as receiver zero forcing leads to noise enhancement, the Cl scheme usually causes signal power
reduction. Let the average power of tith substream b&{|s;|?} = P;, the total power constraint (2)
now has the form

N

S R[HHT), =P

9,8
i=1

where[ ], ; denotes thesi, i) element in the matrix. The sum rate of Cl is the summation of the data rate

of each substream

N
R =Y "E{log, (1+ P)}. 5)
=1

*When N < K, the precoding matrix should be the pseudoinverse of the chamnel H (HH") !s.
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Again, the optimal sum rate is achieved when the power is allocated according to the waterfilling solution
yielding
N
R™ =) "E|l HHT)Y
> flows (s [EH™),,)]

wherey is the solution ofy Y | [M -1/ [(HHH)”LZ} = P [3]. When the power is equally allocated,
e

we have
P
S, [(HHT)]

5 =

= ,fori=1,....N 6
R ©

1,0

where|| - | » denotes the Frobenius norm. Replacing fhen (5) with (6), we get the resulting sum rate
R4 = NE {log, (1+ P|H|32)}. (7)

Both schemes usually assume perfect channel knowledge at the basestation which can be impractical
when K and N become large. In the following sections, we will consider partial channel knowledge and

its effect on the sum rate performance.

IIl. SumM RATE OF SHAPE FEEDBACK

For the multiple antenna broadcast setting described in Section II, every user experiences a multiple-
input single-output (MISO) channdi;. If the system has only one user, thatiis= 1, the transmitter
only needs to know the normalized channel vedigr= h,/||h;|| to achieve a sum rate arbitrarily
close to the channel capacity. In other words, the channel throughput is insensitive to the ||bsg of
knowledge at the transmitter.

To study the sum rate sensitivity of the channel magnitude knowledge for the multiuser case, we
consider shape feedback. The normalized channel vectors for each user are available at the basestation

by reciprocity or user feedback. In this case, the CSI at the basestation is

~

H = [hy, hy,... . hy]"

where h; = h;/||hi|, i = 1,..., N, are all unit norm vectorsH is linked with the perfect channel

knowledge according to
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10

where A = diag ([a1,...,ax]) anda; = ||h;|| are the amplitudes of the channel vectors. Compared to
the perfect channel vectors, channel shape vectors are uniformly distributed on the complex unit sphere

in N-dimensions under i.i.d. Rayleigh fading [42].

A. Shape Feedback with ZFDPC

The first observation about shape feedback is that the basestation is still able to get the exact precoding

matrix for ZFDPC as in the full CSI case. Because the QR-type decompositiéh lnds the form
H=GQ=(A"'G)Q
whereGQ is the QR-type decomposition of the perfect channel makfixAfter precoding, the trans-

mission relation for théth user is

Yi = ai(giisi + Zﬁijsj) +v; (8)
j<i
where the signap;;s; and the known interferenck;_; g:;s; experience the same multiplicative gain
a; = [|hi.

The second observation is that without the channel magnitude knowtedgel|h;||, the basestation

is unable to get the exact inflation factor
Bi = f1giil*Pi/ (aF 19| Pi + 1)

which is required to optimally implement dirty paper coding [7]. Fortunately, the ZFDPC scheme can
still be applied approximately optimally in the high SNR regime becatjse 1 in this region and the
basestation can just fix the inflation factor to he

The third effect of shape feedback is that there is no meaning to adaptive power allocation for ZFDPC.
When the channels of different users are symmetric in distribution, equal power allocBtien #/N
fori=1,...,N) is the optimal strategy.

Therefore, in the high SNR regime, shape feedback can be used with ZFDPC under equal power

loading and gives the following ergodic sum rate

N 2
L12p
RS}I:;,P»O = ZE {logQ (1 + |gz;\|] )} = RPe=€4_ for P> 0.
=1
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11

Compared taR%e*, Rgﬁi P l0ses the adaptive power loading gain. But it is easy to shO\/\lthﬁégp>>0
is still optimal for asymptotically high SNR.

For a Rayleigh fading channel (i.e. the elementsdtbfare i.i.d. distributed a§ N (0, 1)), each|g;;|? is
independently distributed a@(]\,ﬂ.“) which denotes a central Chi-squared distributed random variable

with 2(N — ¢ + 1) degrees of freedom [3], [43]. Thus the closed-form expressiomﬁg for

,P>>0

Rayleigh fading can be easily derived by using the equality in [44] as

N-1
N
Rgﬁ;,P»o = ¢V logye Z(N —i)&ip <P> , for P> 0
=0

where&,(+) is the exponential integral function of order[45], [46].

B. Shape Feedback with Channel Inversion

When shape feedback is combined with channel inversion, we use the inverdibrasthe precoding
matrix. The received signal is

yzHﬂ_ls+v:As+'v. 9)

Compared to channel inversion with perfect channel knowledge, which resuldé additive white
Gaussian noise channels, (9) represeMtsubchannels with different multiplicative channel gains

The power constraint changes into

N
E{llz)?} = > R [EHE"] =P (10)
=1

0,0

Itis of interest to see that for the channel inversion scheme, even without channel magnitude knowledge,
the basestation can still improve the throughput by adaptively allocating the transmit power. Consider the
power allocation scheme

Pi= (11)

which results in the following sum rate

: N o?P
“ = E<lo 1 &
=2 { ® ( " N[(I%rﬁﬂ—l]i,i)}
N
P
= ;E{logQ <1+N[(HHH)—1]“->}'

)
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where the second equality comes fré# H)~! = AT (HHY)A.

Compared to the sum rate performance of perfect CSI with channel inversion, we have the following
result.

Lemma 1:The sum rate performance of shape feedback with channel inversion and the power allo-
cation defined in (11) is better than the sum rate of perfect CSI channel inversion with equal power
allocation, that isR% > R,

sha

Proof: Lety; = [(HH")"'];;. We have
N
, 1 P
g, = NS —Ellog, (1
sha ZZ:; N { 082 ( + N'Yz)}

P
NE[ log <1+ }
{ 2 D1 Vi
Rci—eq

v

where the inequality comes from Jensen’s inequality and the convexityggfl + %). ]
In the simulation results presented in Section V, we can see that the performaf¢g, 6 in fact
very close toR“* which is the ergodic maximum achievable sum rate of channel inversion scheme.
Remarks:Under shape feedback, the basestation does not know the the supportive rates of the current
channel state. The ergodic sum rate can be approached by a fixed rate coding scheme whose codeword

duration is long enough such that it experiences the channel states ergodically.

IV. SUM RATE UNDER LIMITED FEEDBACK

The shape feedback model discussed in the previous section does not provide much flexibility on the
CSI overhead rate for system implementation. In this section, we consider a different kind of partial
CSI model, the limited feedback model, for the basestations of multiple antenna broadcast systems. The
limited feedback model has been successfully used in single user MIMO systems. Its feedback overhead
rate can be adjusted by changing the size of the quantization codebook. We first propose a limited

feedback scheme designed for multiple antenna broadcast channels. We derive an upper bound for its
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sum rate performance under both ZFDPC and CI. The sum rate ceiling effect of limited feedback is also

found.

A. Limited Feedback for Multiple Antenna Broadcast Channels

Limited feedback for single user multiple antenna systems has been studied under different settings. In
most of the cases, a codebook that is known at both the receiver and the transmitter is used to quantize the
channel information necessary to construct the adaptive transmitted signal. The channel information to
be quantized will not necessarily be the channel vector/matrix itself. For example, when limited feedback
beamforming and optimal receive combining are used, the vector codebook is constructed to quantize
the optimal beamforming vector which is the singular vecto#bftorresponding to the largest singular
value [21], [22].

For a multiple antenna broadcast system, the key feature that distinguishes it from a single user MIMO
system is that the receive antennas of different users cannot cooperate. At the receiver side the Etal CSI
is separated intdhq, ho, ..., hx} and distributed among thE users. We assume no user cooperation,
so useri only knowsh; and is not able to obtain the information about the optimal transmission scheme
(for example, the precoding matri@’’ in the ZFDPC scheme) which is based on the full knowledge
of H. Therefore in our limited feedback scheme, the codebook is constructed for each user to directly
guantize the channel vector itself.

Consider a codebooky that containsL codevectors
W= {wl,...,wL}.

We useminimum distance selectioand mean square erroras the encoding function and distortion

measure, respectively. Therefore, us@ncodes its channel vectéy; into
Ow(h;) = w;,

wherel; = argmin; ;< ||h; — wj;||. Every user sends its indéx back to the basestation, so that the

February 3, 2006 DRAFT



14

channel knowledge at the basestation is

Hw = [wll,wl,_,,...,le]T.

The average distortion introduced by quantization according to codelddak defined as
Dy = En {|Qw(R) —R|*}. (12)

A locally optimal codebook in the sense of (12) for a given dizean be constructed by the generalized
Lloyd algorithm [47].

Notice that if a general codebook is used by all the users, the limited feedback may result in the
ill-conditioning of H,,. This could happen whety = [;, for j # k, meaning that two or more users
select the same codevector in the codebook. In that case, the channel knowledge at the baBEEgstation
is not full rank. For multiple antenna broadcast channels, the rank loss in the CSI matrix can be seen
as reducing the number of transmit antennas which will cause a large sum rate degradation. To avoid
such degradation, we propose to use different codebooks at each usey et {wgi), .. .,w(Li)} be

the codebook used by userWe want
w'” £ w) fori#jil,m=1,...,L (13)
We will also require that the codebooks provide the same average distortion, i.e.
Dy, = Dy, fori,j=1,..., K. (14)

To achieve (13) and (14) with probability one, a general codeldbls first generated. Then every
user rotates the common codebook by a random unitary mH;riT{I T,; = IN. These rotation matrices
can be randomly generated either at the basestation side or at the user side in a distributed manner. In
both cases, the basestation should have full knowledge of all the rotation matrices while each user only
needs to know its own rotation matrix.

Thus, the codebook used at usas

WZ‘ = TzW = {Tiwl,...,Ti'wL }
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Under i.i.d. Rayleigh fading, the channel vector is i.i.d. Gaussian distributed which is invariant with
respect to unitary rotation. This means these rotated codebooks have the same mean square quantization
errors

Dy =Dy, i=1,...,K.
The channel knowledge at the basestation is then

H, = {QW1(h'1)v SRR QWK(h’K)]T

with rank(H,) = N with probability one. Furthermore, we will model the codebook’s conditional

behavior as

& { (b — O, () (i — Qi (h))™ | Qi (he)} = DIy (15

and

E {h; — Qw,(hi) | Qw,(hi)} = 0. (16)

B. Limited Feedback with ZFDPC

Now we are ready to analyze the sum rate performance of the limited feedback ZFDPC scheme. The
basestation assumdd,, to be the perfect CSI and applies the QR-type decompostlon= G,,Q,,

to get the precoding matri@’. The resulting input-output relation is
y = HQIs+wv
= (Hy+A)Qs +v
= Gus+AQIs v

where A = H — H,, is the difference between the quantized channel matrix and the perfect channel

matrix. Itsith row vector(A)7 is just the quantization error at user

(A); = h; — Qw, (h;).
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For the:th user, we have

Yi = g5 8i + nggsj +(A)IQs 4 v, (17)
J<i

where g% is the (i,7) element inG,,. The gaing;? is revealed to usei. We will assume thas is
generated using successive dirty paper coding with Gaussian codebooks suEt{ilsé[t} = %IN.
The basestation encoder is assumed to have perfect knowledge of the noise variance and the quantizer
distortion. The receivei uses minimum distance decoding to recover the transmitted codeword assuming
a multiplicative channel value aof;?. A discussion of decoding for dirty paper coding can be found in
[48].

Comparing (17) with (3), we see there is an additional temjiTQ{js in the received signal. Since
the receiveri only has knowledge ofA)” and the basestation only has knowledgeQf, (A)7 Q%
is unknown at both the basestation and the receiver. Therefpre, (A)7 QX s appears as cross user
interference to théth receiver and is treated as noise during decoding. The interference.jdras the
following property.

Lemma 2:For a Gaussian source signalwith equal power allocatiof£{ss’} = %IN, the cross
user interferencey; has variance

E{uu! | H,} = DP/N

where D is the average distortion of the codebook defined in (12).
Proof: Due to the unitary property aR, Qs is also i.i.d. Gaussian distributed with zero mean
and variance]%IN. The source signas is independent of the quantization err@k)?". Therefore, the

variance of the interference is
H P T *
E{uluz | Hw} = NE{(A% (A)z ’ Hw}
P 2
= NE{HQWi(hi)—hz‘H | H, }

DP
N
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The third equality comes from
E {[|Qw, (hi) — hill* | Hw} = D, (18)

which is a direct result of (15). Here we take average over the quantization error by assuming each
codeword experiences the channel state ergodically. [ |

Thus, under limited feedback, the ZFDPC precoding gives us a lower triangular ch@pnelith
conditional interference-plus-noise power equaltaeD P/N for each subchannel. By applying successive
dirty paper coding to the lower triangular chaniél,, the supremum of all achievable sum rates using
limited feedback and Gaussian ZFDPC encodiRff’, is bounded as

N 2
w2p/N
d.PC < E{1 1 ’gzz‘ 1
By = ; { 082 < "1+ DP/N (19)

where equal power allocation is assumed and the expectation is Kyer This follows from the
generalized mutual information work in [49]-[51] using i) the assumption of Gaussian codebooks, ii)
(15) and (16), iii) Lemma 2, and iv) the fact that and E{|v;|?} = 1 are known at the encoder. Note
that the bound in (19) is a necessary, rather than sufficient, condition for achievability.

ComparingRﬁﬁf with R4, we see that not only is th8NR = P/N replaced by theSINR =
P/(N + DP) but also the effective channel gain is n@yj instead ofg;;. Since it is hard to quantify
g7, we derive the following upper bound.

Theorem 1: R%° in (19) is upper bounded by

lim

P(N — D)
dpe N7 1+ —+7). 20
Rhm— OgQ( + N + PD ( )
Proof: Using Jensen’s inequality on (19), we have
Pr 1<
dre < NE{ 1 14— Wiz 21
Rhm— {Og? +N+DPN;|QZZ| ( )
For a QR-type decomposition, we have
9817 < D19l = (HW)T ? = llwn|? (22)
j=1
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where the equalitij.Z1 ]g}‘]’-\Q = ||[(H)¥||?> comes from the orthogonality of the columns of #ein

the decomposition. By substituting (22) into (21), we have

P 1<
- 2
NE{IOgQ <1+N+DPNZ._ o )}

Nlog2< N+DPNZE{le | }) (23)

where the second inequality is from Jensen’s inequality. Since the channel vectors are i.i.d. distributed

R

lim

IN

IN

we have
E{|jw, |*} = E{|jw, ||} fori,j =1,..., K.
Let 7 = E{|lwy||?}. It can be seen thdk{||w, ||>} = N — D by taking expectation on both sides of
(18) overQyy, (h;) = w;,. After replacing this into (23), we get the bound. [ ]
For the casel — oo, i.e., the perfect feedback case, we h@ve- 0 and7 — E {||h;||*} = N. The
bound changes to

R%¢ < Nlog, (1+ P)

which can be seen as the result of applying the Jensen’s inequality to the througipuoofinterfering
MISO channels with i.i.d. Rayleigh fading and transmit pour/iV.

This bound circumvents the difficult problem of analytical evaluatiorypfand provides important
insights into the effect of limited feedback on the sum rate performance of multiple antenna broadcast sys-
tem. First, it implies that a ceiling effect occurs on the sum rate under limited feedback for asymptotically
high SNR.

Corollary 1: For a given general codebodk, there exists a sum rate ceiling &° as the SNR

increases asymptotically high,

P—oo

lim Rhfnc N log, (JZ\;) . (24)

Proof: Let the SNR increase in the upper bound in Theorem 1; we have
P(N-D
lim R < Plim N log, (1 + H)
— 00

P—oo  lm N+ DP
N
N1 — .
082 (D)
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SinceN/D is fixed for a given codebook, the asymptotic bound does not increase as the SNR becomes
large. Therefore, it is a sum rate ceiling for ZFDPC scheme under limited feedback. [ |
Intuitively speaking, the ceiling effect is because the power of the cross user interference caused by
the mismatch betweeRl and H,, is related to the signal power. For a system with a fixed codebook, as
the signal powerP increases, the power of the interference-plus-noise also increases linearly. To avoid
the ceiling effect, we should at least let the interference power keep constahir@seases. This also
enables us to roughly compute the feedback rate required for an applicable limited feedback system. For
the interference powe%v—P to be at least constant @3 increases, we should have of order O(N/P).
From the rate-distortion theorem [47], we know that the number of tbitecessary for each user to

represent itsV x 1 channel vectoh; with average distortiorD is

b= Nlog,(N/D). (25)
By replacingD with O(N/P) in the rate-distortion function (25), we have

b= O(N log, P)

which is the approximate number of bits necessary for the system to avoid the sum rate ceiling. We see
thatb has to increase logarithmically with and should scale linearly as the number of transmit antenna
N grows. For example, wheR = 10dB and N = K = 4, we haveb =~ 13 bits for each user.

We can see that the sum rate ceiling is directly linked withrtirean square erroD of the codebook
used. This shows the validity of usinginimum distance selecticand mean square errodistortion in
guantization codebook design for multiple antenna broadcast channels. Intuitively speaking, the sum rate
ceiling is caused by the cross user interference term whose variance incre@goas(h;) — h;||*}
increases. To minimize the cross user interference, we want to select the vector which is clhsést to
the codebook. For codebooks that are optimal in the sense of average squared error, the average distortion
D decreases as the size of the codebdolncreases. Thus it means the ceiling becomes highdr as

increases.

February 3, 2006 DRAFT



20

C. Limited Feedback with Channel Inversion

When limited feedback is combined with the channel inversion scheme, the basestatidd [fsas

the beamforming matrix. The received signal is
Yy = HH:UIS +v
= s+AH,'s+w.
Due to the power constraint, we have

K
E{|H,'s|* | H,} =Y P[HH)™;;=P.
=1

We will assume thas is generated using Gaussian codebooks. For analytical simplicity, we assume equal

power allocation, that is,

PI
E{ss" | H,} = N = | H [ PIy. (26)

Zfil[(HwH{j)_l]i,z
As before, we assume the receiver uses minimum distance decoding (assuming a multiplicative channel
gain of one) to try to recover the transmitted codeword. Thus, the receiver performs decoding as if the

signal was transmitted over an additive white Gaussian noise channel.

Again, there is the cross user interfererge= (A)7 H,'s in the received signal of théth user.

Lemma 3:For a Gaussian source sigralith equal power allocatioft {ss” | H,,} = ﬁb\;,
the cross user interferencg has variance
E{G¢" | Hy} = DP/N
where D is the average distortion of the codebook defined in (12).
Proof: We have
E{G({" [ Ho} = E{(A)FH, 'ss"H,"(A)} | H,}
P
= E{M(A)?leﬂfm):‘ | Hw}
1H o, |17
P
- E{_IQtr (H 7 (A (A)TH,Y |Hw}. (27)
I1H "
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According to (15), we haver (H,"E {(A);(A)] | H,} H,') = |H,'||%%. Replacing it into (27),
we get

E{¢¢! | Hy} = DP/N.

[
Since the conditional interference-plus-noise power of each userHisDP/N, we can obtain the
following ergodic sum rate bound. The supremum of all achievable sum rates using a limited feedback

codebook of distortiorD and Gaussian codebooks, denoféfl , is bounded as

: P|H |5’
iy S NE<1 1+ —=— . 28

Again, this result uses the generalized mutual information work in [49]-[51]. Also as before, the bound
in (28) is a necessary condition for achievability.
This bound (28) can be further bounded as follows.

Theorem 2:R¢ in (28) is upper bounded by

(29)

; P(N—-D
lcizmﬁNlog2<l+()>.

N+ PD
Proof: Since H,, is nonsingular with probabilityl, we can expres§ H,'|=? in terms of the

singular values ofH ,,, that is,

—1— _ —1
1= = (1HG )
-1
AN
- Z I (30)
=1 v
where)\¥ is theith singular value off . Becausé\y|?, ..., |A\%|? are all positive, their harmonic mean

is less than their arithmetic mean, which gives

N -1 L
w2
N <§ :W’P) < =S eP (31)
i=1 17 i=1

By combining (30) with (31) and replacing Y, |\¥|? with || H,,|%, we get
- 1
I < | HullE (32)
LN
= WZHU’LHZ-
=1
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Therefore, theRS in (28) is bounded by

lim

N
) P
¢ < NE{1 1 1% . 33
From Jensen’s inequality and the fact tiAt> Y | ||w; |2} = Nij = N(N — D), we get
: P(N — D)
P i S
which is the same bound as in Theorem 1. [ |

Due to the same reason, Cl also experiences a sum rate ceiling for limited feedback under a fixed
codebook as in the ZFDPC case. To maintain the sum rate growth, we need approx{adhe, P)

feedback bits per user which makes the cross user interference keep constant as the signal power increases.

We should remark that the bound is looser fff  than forRﬁﬁf becausd|H ,'|* has a much higher
probability of being near zero thag: Zf\il |lw;. ||2. This is also the reason why CI has a lower throughput
than ZFDPC under limited feedback. Even though the power of interference-plus-noise is the same, the

effective channel gain of Cl is more likely to be in a deep fade than the ZFDPC case.

V. SIMULATION RESULTS

In this section, we give some numerical results on the ergodic sum rate performance of these two partial
CSI models discussed in the previous sections. Throughout the simulations, the channel is assumed to
be independent Rayleigh fading, that is, each entnHois independenthC N (0, 1) distributed. Since
the noise power is normalized, the plotted SNR in the figuréiNiR = 101log,, P. For a given setting,

the ergodic sum rate is obtained by averaging over at least 20000 channel realizations.

The ergodic ratio otRfffg pusp (O R s plotted with respect to SNR in Fig. 1. The number of
transmit antennas i% = K = 8. We can see that th&’" psp IS @lmost the same aB?* when

SNR > 15dB, which indicates the asymptotic optimality of ZFDPC with shape feedback in the sense
of sum rate for high SNR.
Fig. 2 plots the growth ofzP° p>>o With the number of transmit antennas foNR = 20dB. It can

sha,

be observed that the sum rate of shape feedback has the same growth rate as that of perfect transmitter
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Fig. 1. The ergodic ratio oRf{)’;"’P>>O to R%* with respect to SNR folV = 8 and K = 8.

channel knowledge. It shows that shape feedback captures most of the throughput advantage provided
by the multiple antennas through the ZFDPC encoding.

The sum rate performance of shape feedback with channel inversion is shown in Fig. 3 and Fig. 4. In
both figures, the ergodic performance B! . is superior toR“~*¢ and very close ta?“*. From Fig.
3, we see that th&<  has aboutl.5dB gain overR“ ¢ for N = K = 8. WhenSNR > 15dB, RS,
and R“* have almost the same ergodic performance. Fig. 4 shows that the g&ff),afver R~ also
increases as th& increases.

For the simulation of limited feedback, the locally optimal codebooks are obtained by training from
a large set of training vectors generated according to i.i.d. Rayleigh fading. The variance of the cross

user interference observed from Monte Carlo simulation is very close to the theoretical VRIUE.

The solid curves in Fig. 5 show the ergodic performancé%ﬁ for N = K = 4 when the feedback
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Fig. 2. Ergodic performance dfi;iﬁ’:yp>>0 and R with respect toNV for SNR = 20dB.

rate of each user i8bits, 10bits and the perfect CSI case. The respective upper bounds are also plotted
in dashed lines for comparison. The ceiling effect can be clearly observed when the feedback rate is
finite. The sum rate curves increase linearly w8ikiR. for low SNR and become flat for higiNR. The
upper bound curves given in Fig. 5 also indicate that a fixed overhead rate is not sufficient to obtain sum
rate growth forSNR, > 20dB. These results match our discussion on the approximation of necessary
overhead rate.

The results for the ergodic sum rate of limited feedback with channel inversion are presented in Fig.
6 for N = K = 4 and feedback rate equaibits and10bits of each userR“—* is also plotted for
comparison reason. The sum rate ceiling can be observed, and their performance is worse than limited

feedback with ZFDPC with the same feedback rate.
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Fig. 3. Ergodic performance ak%,, RS —°?, R®*, and R°~°¢ with respect to SNR foiV = 8 and K = 8.

sha

VI. CONCLUSION

In this paper, we considered two kinds of partial CSI models for the basestation in multiple antenna
broadcast systems. We showed that the shape feedback achieves the optimal sum rate for asymptotically
high SNR when combined with the ZFDPC scheme. When using ClI, shape feedback can obtain a
sum rate larger than CIl with perfect CSI under equal power allocation by using the proposed power
allocation strategy. For the limited feedback model, we proposed a limited feedback scheme that avoids
the ill-conditioning of basestation CSI by randomly rotating a general codebook known at each receiver.
We derived upper bounds for the ergodic sum rate of limited feedback under both ZFDPC and CI. The
bound gives critical insight about the sum rate performance of limited feedback. It shows that the systems

experience a ceiling effect on the sum rate for a fixed feedback rate.
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