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On the Performance of Random Vector Quantization
Limited Feedback Beamforming in a MISO System
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Abstract— In multiple antenna wireless systems, beamforming
is a simple technique for guarding against the negative effects
of fading. Unfortunately, beamforming requires the transmitter
to have knowledge of the forward-link channel which is often
not available a priori. One way of overcoming this problem is
to design the beamforming vector using a limited number of
feedback bits sent from the receiver to the transmitter. In limited
feedback beamforming, the beamforming vector is restricted to
lie in a codebook that is known to both the transmitter and
receiver. Random vector quantization (RVQ) is a simple approach
to codebook design that generates the vectors independently
from a uniform distribution on the complex unit sphere. This
correspondence presents performance analysis results forRVQ
limited feedback beamforming.

Index Terms— limited feedback, multiple antenna system,
random beamforming codebook, random vector quantization,
transmit diveristy

I. I NTRODUCTION

Multiple antenna beamforming is an efficient technique
for providing improved performance in fading channels. In
beamforming, each transmit antenna is weighted by a properly
designed gain and phase shift before transmission. Unfortu-
nately, transmit channel knowledge is required to design the
antenna weights.

Limited feedback beamforming, first proposed in [1], [2],
can be employed when the transmitter does not have a priori
channel knowledge. When implementing limited feedback
beamforming, the beamforming vector is restricted to lie in
a finite set or codebook that is known to both the transmitter
and receiver. The receiver uses its channel estimate to choose
the vector from the codebook that maximizes the conditional
receive signal-to-noise ratio (SNR). The binary index of the
chosen vector is then conveyed to the transmitter over a limited
rate feedback channnel.

Recent work has extended the concept of limited feedback
beamforming to quantized equal gain transmission [3] and
to more general Grassmannian beamforming [4]–[6]. These
works used deterministic codebooks that were designed using
techniques from Grassmannian line packing. A simple and
easily adaptable codebook design is to randomly generate
the codebook. Santipach and Honig proposed random vec-
tor quantization (RVQ) limited feedback beamforming and
analyzed asymptotic performance by keeping the number of
feedback bits per transmit antenna constant [7], [8]. In RVQ
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beamforming, the codebook, which is known to both the
transmitter and receiver, is randomly generated each time the
channel changes. Other work on limited feedback analysis has
been done in [9], [10].

This correspondence analyzes the performance of RVQ
limited feedback beamforming on multiple-input single-output
(MISO) channels. The transmitter has access to a low rate,
noiseless and zero delay feedback channel from the receiver.
Closed-form expressions for the average SNR, outage proba-
bility, average bit error probability, and ergodic capacity are
derived.

The paper will proceed as follows. Section II provides an
overview of the system configuration. Section III analyzes the
SNR performance. An outage analysis is performed in Section
IV. Section V presents bit error rate results, and Section VI
derives the ergodic capacity. We conclude in Section VII.

II. SYSTEM MODEL

Consider a MISO system withm transmit antennas and a
single receive antenna. The channel is assumed to be frequency
flat and block fading. This allows us to model the channel
vector as a1 �m random vectorh = [h1; h2; : : : ; hm℄: We
assume that the entries inh are independent and identically
distributed (i.i.d.)CN (0; 1): We assume that the transmitter
array transmits a single dimensional symbols chosen from a
constellationS: Before transmission on antennai; the symbol
is weighted by a complex numberwi: The weights for all
antennas can be collected into anm� 1 beamforming vectorw = [w1; w2; : : : ; wm℄T where(�)T denotes transposition. The
system input-output relationship can be modeled asx = hws+ n (1)

where x is the processed signal at the receiver andn is aCN (0; N0) noise term. For power constraint reasons, we will
assume thatE[jsj2℄ = Es whereE[�℄ denotes expectation. This
yields an average transmit power conditioned onw of kwk22Es
wherek �k2 is the vector two-norm. To limit the total transmit
power to Es; we will require thatkwk2 = 1: The receiver
decodes by selecting the symbol from the constellation setS
that minimizes its distance withx. Define� = Es=N0: From
(1), the received SNR (averaged with respect to the symbol
and noise power) is given by = �jhwj2: (2)

The beamforming vector will be chosen from a randomly
generated codebookF that will be made available to both
transmitter and receiver. Let the cardinality ofF be denoted
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by the positive integerN (i.e. F = fw1;w2; : : : ;wNg). The
codebookF will be randomly generated by selecting each of
theN vectors independently from the uniform distribution on
the complex unit sphere. Using the codebook, the receiver will
choose the SNR-maximizing beamforming vector, yieldingw = argmaxf2F jhf j2. Thus, the conditional SNR at the
receive side is  = �maxw2F jhwj2: (3)

In this correspondence, we assume the existence of a low rate,
error-free, and zero-delay communication link from the re-
ceiver to the transmitter for the purpose of conveyingw to the
transmitter. Because the codebook is finite, the beamforming
vectorw can be conveyed from the receiver to the transmitter
usingdlog2Ne bits of feedback.

III. S IGNAL -TO-NOISE RATIO ANALYSIS

This section derives the closed-form expressions for the
expected SNR for this system. The expected SNR of the
system can be found by taking the expectation of (3) with
respect toh andw. Define� = maxw2F jhwj2=khk22:
The SNR expression can be rewritten as = �maxw2F jhwj2 = ��khk22 (4)

where� andkhk22 are independent [11]. Using the assumption
of spatially uncorrelated Rayleigh fading,khk22 is chi-squared
distributed.� is the squared normalized inner product betweenh andw. The density of� is given by the following lemma:

Lemma 1: The cumulative distribution function (cdf) of� = maxw2F jhwj2=khk22 in a MISO system withm transmit an-

tennas using a randomN unit vector beamforming codebook
is given byF�(�) = �1� (1� �)m�1�N (5)= NXi=0 �Ni �(�1)i(1� �)i(m�1) (6)= NXi=0 i(m�1)Xj=0 �Ni ��i(m� 1)j �(�1)i+j�j (7)

for � 2 [0; 1℄: In addition, for� 2 [0; 1℄, the probability density
function (pdf) is given byf�(�) = N(m� 1) �1� (1� �)m�1�N�1 (1� �)m�2 (8)= NXi=1 �Ni �(�1)i+1i(m� 1)(1� �)i(m�1)�1 (9)= NXi=0 i(m�1)Xj=1 �Ni ��i(m� 1)j �(�1)i+jj�j�1: (10)

Proof: Using results from [5, Theorem 1] and [4], the cdf
of the squared absolute inner product between two uniformly
distributed unit vectors is, for� 2 [0; 1℄, given by1� (1� �)m�1: (11)

To find the cdf of�, we realize that the cdf of the maximum
squared inner product ofN independent beamforming vectors
is the same as (11) raised to theN -th power, which results
in (5). Eqs. (6) and (7) used the binomial series expansion(1 + x)n = Pnk=0 �nk�xk on (5). Eqs. (8), (9), and (10) are
derived by taking derivative of (5), (6), and (7), respectively.

The pdf and cdf of� allow us to find the expectation of�, which will be used for deriving the expected SNR. The
following corollary derives the expectation of�.

Corollary 1: The expected value of� is given by the
equation E[�℄ = 1� NXi=0 �Ni �(�1)ii(m� 1) + 1 : (12)

Proof: IntegratingE[�℄ = R 10 �f�(�)d� by parts and
using (6) yields (12).
Applying

�Nk � = (�1)k(�N)kk! [12, P.6], where(z)k = �(k+z)�(z)
is the Pochmann symbol, and then [12, 6.6.8] givesNXk=0 �Nk �(�1)kk(m� 1) + 1 = NB�N; mm� 1� (13)

whereB(x; y) = �(x)�(y)�(x+y) is the Beta function and�(x) =R10 tx�1e�tdt is the Gamma function. Using Corollary 1 andE[khk22℄ = m, the expected SNR is simplyE[℄ = m��m�NB�N; mm� 1� : (14)

Note that the second term in (14) denotes the SNR loss due to
quantization. To study the rate of decay of quantization loss
due to codebook size, the loss term can be expressed asm�NB�N; mm� 1� =m�N �(N)�� mm�1���N + mm�1�� �(N + 1)��N + 1 + 1m�1� (15)

where� denotes proportionality. Using Stirling’s approxima-
tion to the Gamma function, this loss term has the order ofN� 1m�1 . Using limx!1 �(x)�(x+a)ea log2 x = 1 [13, 8.328.2],limN!1NB�N; mm� 1�= limN!1 �(N + 1)e 1m�1 ln(N+1)��N + 1 + 1m�1�| {z }=1 limN!1 �� mm�1�e 1m�1 ln(N+1) = 0:

Simulation: Figure 1 shows the closed-form expected
SNR expression in (14) matched against simulation for the(m;N) = (2; 8) and (m;N) = (3; 16) cases. The ideally
achievable SNR with perfect transmit channel knowledge
maximum ratio transmission (MRT) is also included to show
quantization loss. Figure 2 shows the effect of increasing the
number of beamforming vectorsN in the codebook. Clearly
the expected SNR approaches the ideal MISO system asN !1.
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Fig. 1. Closed-form SNR expression matched against simulation. The
ideal lossless SNR is also included to measure against the SNR loss due
to quantization
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Fig. 2. Average receive SNR for various codebook sizes.

IV. OUTAGE PROBABILITY ANALYSIS

This section derives the closed-form expression for the
outage probability of the system. The general approach of
taking expectation with respect to the channel magnitude and
squared absolute correlation will again be employed. The
following lemma gives the exact expression for the outage
probability of the RVQ limited feedback beamforming system.

Lemma 2: The outage probabilityPout(�;R) for an SNR�
and rateR in a MISO system withm transmit antennas using
a randomN vector beamforming codebook is given byPout(�;R) =  �m; 2R�1� ��(m) + � 2R�1� �m e� 2R�1��(m) NXi=0 �Ni �� (�1)i�(i(m� 1) + 1)U �im� i+ 1; 1 +m; 2R � 1� �

(16)

whereU(a; b;x) = 1�(a) R10 e�xtta�1(1 + t)b�a�1dt is the
Kummer U function (also known as the Tricomi function
and confluent hypergeometric function of the second kind)

and(n; x) = R x0 ta�1e�tdt is the lower incomplete Gamma
function.

Proof: The conditional capacity for the beamforming
system is given byC(�jh) = maxw2F log2 �1 + �jhwj2� = log2 �1 + ��khk22� :

(17)
The outage probabilityPout is the probability that a realized
channel cannot support a given transmission rateR. The
current system (1) is equivalent to a single-input single-output
(SISO) system with SNR. Hence, the outage probability is
given asPout(�;R) = P (C(�jh) < R) = P �khk22� < 2R � 1� � :

(18)
Let h = khk22 and  = 2R�1� : Eq. (18) can be evaluated

by finding the cdf ofh and then taking the expectation with
respect to�. This givesP ��khk22 < �= 1�(m) Z 0 e�hhm�1dh| {z }=(m;) + 1�(m) NXi=0 �Ni �(�1)i� Z 10 (1� �)i(m�1)e� � � � �m�1�2 d� (19)= (m; )�(m) + 1�(m) NXi=0 �Ni �(�1)im�12 e� 2�(i(m� 1) + 1)W (1�2i)(m�1)2 ;m2 (): (20)

Eq. (19) is derived using integration by parts, and then substi-
tuting (6) and the pdf of a chi-squared random variable. Eq.
(20) used the entries [13, 3.471.2] andW�;��(z) = W�;�(z)
[13, 9.232.1] whereW�;�(z)is the Whittaker function. Ex-
pressing the Whittaker function as Kummer U function using
[14]Wk;m(z) = e�z=2zm+1=2U(m� k + 1=2; 1 + 2m; z)
and substituting = 2R�1� yields the closed-form outage
probability expression in (16).

Notice again that the first term of (16) is the ideal outage
probability without quantization loss. Therefore, the second
term represents the extra outage probability due to quantiza-
tion.

Simulation: Figure 3 shows the outage probability ex-
pression in (16) plotted along with simulated results for the(m;N) = (2; 8) and(m;N) = (3; 16) cases. Both used a rate
of 1.1 bits/sec/Hz. The outage probability in a MRT system is
also included to show quantization loss.

V. B IT ERROR PROBABILITY ANALYSIS

This section will develop the bit error probability (BEP) for
a RVQ limited feedback MISO beamforming system using
binary biorthogonal modulation (ex. BPSK) or orthogonal
modulation (ex. BFSK). The following lemma gives the
closed-form expression of the BEP.
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Fig. 3. Closed-form outage probability expression matchedagainst simula-
tion.

Lemma 3: The BEP Pe(�) for an SNR � in a MISO
system withm transmit antenas using a randomN vector
beamforming codebook employing biorthogonal or orthogonal
modulation is given byPe(�) =m�1Xk=0 m�kXa=0 NXi=1 (�1)a+i+1i(m� 1)(q�) a22m+k �m� ka ���m� 1 + kk ��Ni �B �i(m� 1); a2 + 1�� 2F1 �a2 + k; a2 + 1; i(m� 1) + a2 + 1;�q��

(21)

where q is a constant related to modulation,B(x; y) =R 10 tx�1(1 � t)y�1dt is the Beta function and2F1(�; �; �; z)
is the Gauss hypergeometric function. For biorthogonal sig-
naling,q = 1. For orthogonal signaling,q = 0:5.

Proof: The BEP of an additive noise SISO system with
SNR � and binary signaling has the formulaPSISOe (�) = Q�p2q�� : (22)

The BEP of the current system can be found similarly byPe(�) =E� �Ekhk22 �Q�q2q��khk22����� ���=E� �Z 10 Q�p2q�h�� fkhk22(h)dh� : (23)

The inner integral in (23) has been computed in closed-
form for the error rate analysis of maximum ratio combining
systems in [15, 14.4-15]. Using these results define� =q q�1+q� , and expressing

� 1��2 �m = � 1��2 �k � 1��2 �m�k and(1� �)(1 + �) = 1� �2 = (1 + q�)�1 givesZ 10 Q(p2q�h)fkhk22(h)dh=m�1Xk=0 12m+k (1� �)m�k �m� 1 + kk � (1 + q�)�k : (24)
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Fig. 4. Closed-form BEP expression matched against simulation with three
transmit antennas and a codebook size ofN = 8:
Substituting (24) into (23) and replacing the SNR term� in
(24) by �� in (23),Pe(�) = E� "m�1Xk=0 (1� �)m�k2m+k �m� 1 + kk � (1 + q��)�k#

(25)

where now� =q q��1+q�� =q ��+ 1q� . Expanding(1� �)m�k
into a binomial series, the BEP can then be computed by taking
the expectation with respect to� asPe(�) =m�1Xk=0 m�kXa=0 NXi=1 (�1)a+i+1i(m� 1)2m+k(q�)k��m� ka ��m� 1 + kk ��Ni �� Z 10 � a2 �� + 1q���( a2+k) (1� �)i(m�1)�1d�:

(26)

The closed-form solution for the integral in (26) is given in
[13, 3.197.8]. Substituting the equation results in the closed-
form BEP expression in (21).

Simulation: Figure 4 shows the closed-form BEP expres-
sion matched against simulated results for the(m;N) = (2; 8)
and (m;N) = (3; 16) cases. The BEP for an ideal MRT
system is included to measure quantization loss.

VI. ERGODIC CAPACITY ANALYSIS

Ergodic capacity is an important performance indicator in
limited feedback systems. In this section, we quantify the
RVQ limited feedback ergodic capacity into the ideal (i.e. full
channel knowlege) ergodic capacity minus a limited feedback
penalty term. The following lemma summarizes the result.

Lemma 4: The ergodic capacityC(�) for an SNR� in a
MISO system withm transmit antennas using a randomN
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vector beamforming codebook is given byC(�) = log2 e e 1� m�1Xk=0 Ek+1 �1��� Z 10 �1� (1� �)m�1�N m� e 1��Em+1� 1��� d�!
(27)

whereEn(x) = R11 e�xtx�ndt is then-th order exponential
integral.

Proof: The capacity of a MISO channel is given byC(�) = E� hEkhk22 � log2(1 + ��khk22)�� ��i : (28)

The inner expectation onkhk22 is a special case of the
MIMO capacity given by [16], [17]C(�j�) = (log2 e)e 1�� m�1Xk=0 ���k; 1���(��)k (29)

where �(a; x) = R1x ta�1e�tdt is the upper incomplete
Gamma function. It can be transformed into an exponential
integral function using [14, 37:13:12]En(x) = xn�1�(1 �n;x) for nonnegative integern. Thus, converting (29) into an
exponential integration expression and taking the expectation
over �,C(�) = log2 e Z 10 f�(�)e 1�� m�1Xk=0 Ek+1 � 1��� d�: (30)

Integrating (30) by parts yieldsu =e 1�� m�1Xk=0 Ek+1 � 1���du =�1��2 e 1��  m�1Xk=0 Ek+1 � 1���� m�1Xk=0 Ek � 1���! d�d� =f�(�)d�� = �1� (1� �)m�1�N = m� e 1�� d�Em+1 � 1��� (31)

where the recurrence relationnEn+1(x) = e�x�xEn(x) was
used. Carrying out the integration by parts and multiplyingbylog2 e yields (27).

Eq. (27) is the difference of the capacity of an MRT
system and loss due to quantization. AsN !1, the system
performance approaches the ideal MRT system performance.
This is expected as SNR quantization loss vanishes asN !1.

Simulation: Figure 5 shows (27) matched against a simu-
lated ergodic capacity for the(m;N) = (2; 8) and (m;N) =(3; 16) cases. The ideal MRT ergodic capacity is included to
show the loss due to quantization.

VII. C ONCLUSIONS

In this correspondence, we analyzed a random codebook
generation scheme, known as RVQ, to implement limited
feedback beamforming. Closed-form expressions for expected
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is included to measure loss due to quantization

SNR, outage probability, and bit error probability were de-
rived in exact form. Ergodic capacity is given in an integral
expression as the difference of the ideal MRT capacity and a
loss term due to quantization. Simulations were provided to
prove the exact match of the expressions derived.
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