Home | My Info | Resume | Research | Teaching |


Professor in the School of Electrical and Computer Engineering at Purdue University

Leader of Efficient Spectrum Usage Preeminent Team

IEEE Fellow, 2015


Editor, Wireless Communication, IEEE Transactions on Communications (2008-2011)

Associate Editor, IEEE Transactions on Signal Processing (2011-2013)

Sample of Current Research Topics:

Wireless Signal Design for EM Exposure Constrained Systems

All wireless devices expose the user to some level of radiation.  Regulatory agencies, such as the FCC, impose limits on the amount of user radiation caused by the uplink transmission of commercially available phones.  This radiation is measured using the specific absorption rate (SAR).  We are developing models for the effect of baseband signal design on SAR.  Using these models, we are developing new signaling schemes that can i) achieve substantial performance improvement for a fixed exposure level or ii) dramatically reduce the exposure level with no decrease in performance.

Distributed MIMO and Multi-Node Communication for Low-Cost Software Radios

There is a growing interest in deploying networks of highly programmable software radios.  These nodes are likely to be controlled by a centralized computation center.  We are looking at transmission and reception schemes for these networks.  Research challenges include dealing with the low computational ability of the nodes and the constrained communication links connecting the software radios to the centralized processor.

Millimeter Wave Wireless Communications

There is much commercial interest in looking at "new" frequencies above 6 GHz.  The most popular bands are the millimeter wave bands, roughly in 28-100 GHz.  We are looking at various architecture and signal processing challenges related to using the large array beamforming and precoding techniques. 

Spectrum Sensing and Spectrum Adaptation

Future spectrum allocations may be flexible, allowing multiple networks to share the same band.  In lightly licensed and unlicensed bands, a network can improve spectral efficiency by adapting to the time-frequency usage of other networks sharing the same band.  We are developing and implementing spectrum sensors for these settings.  We are also interested in public policy issues related to spectrum regulation.

Software Radio and Spectrum Competitions

For the last ten years, we have been very active in software radio experiments using USRP and WARP platforms.  We were a finalist in the DARPA Spectrum Challenge and are currently preparing for the DARPA Spectrum Collaboration Challenge (SC2).  We are developing a new testbed at Purdue to perform sophisticated multi-node experiments on campus.

Other Current and Past Research interests:

MIMO (single, multiple user, network, and massive) wireless systems

Signaling for reduced EM exposure

Software radio

Low-cost, low-power networks

Wireless power transfer

Massive MIMO and other large array communication systems

Distributed MIMO

MIMO signal processing for medical imaging

Common information broadcasting wireless systems

Feedback in Gaussian channels

Multihop wireless systems

Codes on manifolds (Grassmann and Riemannian)

Any kind of adaptive communication system

IEEE Style Bio

David J. Love (S’98 - M’05 - SM'09 - F'15)  received the B.S. (with highest honors), M.S.E., and Ph.D. degrees in electrical engineering from the University of Texas at Austin in 2000, 2002, and 2004, respectively. During the summers of 2000 and 2002, he was with Texas Instruments, Dallas, TX. Since August 2004, he has been with the School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, where he is now a Professor and recognized as a University Faculty Scholar. He leads the College of Engineering Preeminent Team on Efficient Spectrum Usage.  He has served as an Editor for the IEEE Transactions on Communications, an Associate Editor for the IEEE Transactions on Signal Processing, and a guest editor for special issues of the IEEE Journal on Selected Areas in Communications and the EURASIP Journal on Wireless Communications and Networking. His research interests are in the design and analysis of communication systems and MIMO array processing.  Dr. Love has been very involved in commercialization of his research with around 30 U.S. patent filings, 27 of which have issued.  He is a frequent consultant on cellular and WiFi systems, including patent licensing and litigation.

Dr. Love has been recognized as an IEEE Fellow and Thomson Reuters Highly Cited Researcher.  He is a Fellow of the Royal Statistical Society, and he has been inducted into Tau Beta Pi and Eta Kappa Nu.  Along with his co-authors, he has won best paper awards from the IEEE Communications Society (2016 IEEE Communications Society Stephen O. Rice Prize), the IEEE Signal Processing Society (2015 IEEE Signal Processing Society Best Paper Award), and the IEEE Vehicular Technology Society (2009 IEEE Transactions on Vehicular Technology Jack Neubauer Memorial Award).  He has received multiple IEEE Global Communications Conference (Globecom) best paper awards.  He was the recipient of the Fall 2010 Purdue HKN Outstanding Teacher Award, Fall 2013 Purdue ECE Graduate Student Association Outstanding Faculty Award, and Spring 2015 Purdue HKN Outstanding Professor Award.  He was an invited participant to the 2011 NAE Frontiers of Engineering Education Symposium and 2016 EU-US NAE Frontiers of Engineering Symposium.  In 2003, Dr. Love was awarded the IEEE Vehicular Technology Society Daniel Noble Fellowship.


“Fun” Links


Dallas Cowboys

Dallas Mavericks
Texas Rangers

Texas BBQ

Kreuz Market
Smitty's Market
Louie Mueller's