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Abstract—H2-matrix constitutes a general mathematical
framework for efficient computation of both partial-differential-
equation (PDE) and integral-equation (IE)-based operators.
Existing linear-complexity H2 matrix-matrix product (MMP)
algorithm lacks explicit accuracy control, while controlling accu-
racy without compromising linear complexity is challenging.
In this article, we develop an accuracy controlled H2 MMP
algorithm by instantaneously changing the cluster bases during
the matrix product computation based on prescribed accuracy.
Meanwhile, we retain the computational complexity of the overall
algorithm to be linear. Different from the existing H2 MMP
algorithm where formatted multiplications are performed using
the original cluster bases, in the proposed algorithm, all additions
and multiplications are either exact or computed based on pre-
scribed accuracy. Furthermore, the original H2-matrix structure
is preserved in the matrix product. While achieving optimal com-
plexity for constant-rank matrices, the computational complexity
of the proposed algorithm is also minimized for variable-rank
H2-matrices. For example, it has a complexity of O(NlogN)
for computing electrically large volume IEs, where N is matrix
size. The proposed work serves as a fundamental arithmetic in
the development of fast solvers for large-scale electromagnetic
analysis. Applications to both large-scale capacitance extraction
and electromagnetic scattering problems involving millions of
unknowns on a single core have demonstrated the accuracy and
efficiency of the proposed algorithm.

Index Terms—H2-matrix, controlled accuracy, electromag-
netic analysis, linear complexity, matrix-matrix product (MMP).

I. INTRODUCTION

THE H2-matrix [1], [2] constitutes a general mathemat-
ical framework for compact representation and efficient

computation of large dense systems. Both partial differential
equation (PDE) and integral equation (IE) operators in electro-
magnetics can be represented as H2-matrices with controlled
accuracy [3]–[6].

The development of H2-matrix arithmetic such as addition,
multiplication, and inverse are of critical importance to the
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development of fast solvers in electromagnetics [7]. Take the
matrix-matrix product (MMP) as an example, it can be used
to efficiently compute the field solution for multiple right-
hand sides [8] by representing the right-hand side matrix as
an H2-matrix, and computing the product of the H2-matrix
representation of the original system matrix’s inverse and the
right-hand side matrix. It can also be used to compute the
intermediate matrix such as a Schur complement required
in a fast solver [9]. Under the H2-matrix framework, it has
been shown that an H2-matrix-based addition, matrix-vector
product (MVP), and MMP all can be performed in linear
complexity for constant-rank H2 [1]. However, the accuracy
of existing H2-MMP algorithms like [1] is not controlled. This
is because given two H2-matrices AH2 and BH2 , the matrix
structure and cluster bases of their product C = AH2 × BH2

are preassumed, and a formatted multiplication is performed,
whose accuracy is not controlled. For example, the row cluster
bases of AH2 and the column cluster bases of BH2 are assumed
to be those of C. This treatment lacks accuracy control since
the original cluster basis may not be able to represent the
new matrix content generated during the MMP. For instance,
when multiplying a full-matrix block F by a low rank block
Vt SVs

T , treating the result as a low-rank block is correct.
Nevertheless, it is inaccurate to use the original row cluster
basis Vt as the product’s row cluster basis, since the latter has
been changed to FVt . Therefore, the algorithm in [1] can be
accurate if the cluster bases of the original matrices can also be
used to accurately represent the matrix product. However, this
is unknown in general applications, and hence the accuracy of
existing linear-complexity MMP algorithm is not controlled.
One can find many cases where a formatted multiplication
would fail.

The posteriori multiplication in [2] is more accurate than
the formatted multiplication in [1]. But it is only suitable for
special H2 matrices. For example, in this special H2-matrix,
if one inadmissible block is multiplied by another inadmissible
block, then the product must be treated as an inadmissible
block. In general, when computing C = AH2 ×BH2 , the block
partitions in A, B, and C are determined by the admissibility
condition. It is common to encounter the case that two
inadmissible blocks are multiplied, but the target block in C is
admissible. In addition, this posteriori multiplication requires
much more computational time and memory than the format-
ted one. It needs to first represent the product in an H-matrix
and then convert it into an H2-matrix, the complexity of which
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is not linear. In [10], local low-rank updates are performed
to control the accuracy of MMP. However, the computational
cost of each update is O[k2(#t + #s)], which depends on the
row dimension (#t) and column dimension (#s) of the matrix
blocks. For constant-rank H2-matrix, i.e., constant k, this leads
to a complexity of O(k2 NlogN). Nonetheless, for rank that
increases with the electrical size like that encountered in the
electrically large analysis, the resultant complexity can become
very high. For example, for k that linearly increases with
electrical size, and hence being a function of N , the complexity
of MMP of [10] would be at least O(N5/3) in a volumetric
analysis, and even higher in a surface analysis.

In this article, we propose a new algorithm to do the H2

matrix-matrix multiplication with controlled accuracy. The
cluster bases are calculated instantaneously based on the
prescribed accuracy during the computation of the MMP.
Meanwhile, we are able to keep the computational complexity
to be linear for constant-rank H2. For variable-rank cases such
as those in an electrically large analysis, the proposed MMP
is also efficient since it only involves O(2l ) computations
at level l, each of which costs O(k3

l ) only, where kl is
the rank at tree level l. This algorithm can be used as a
fundamental arithmetic in the error-controlled fast inverse,
lower-upper (LU) factorization, solution for many right-hand
sides, and so on. Numerical experiments have demonstrated
its accuracy and low complexity. In [17] and [18], we present
a fast algorithm to compute the product of two H2-matrices in
controlled accuracy. However, unlike this article, the original
cluster bases are not completely changed, but appended to
account for the updates to the original matrix during the
MMP. In [12], we present the basic idea of this article.
However, it is a one-page abstract. In this article, we provide a
complete algorithm together with a comprehensive analysis of
its accuracy and complexity, whose validity and performance
are then demonstrated by abundant numerical examples.

II. PRELIMINARIES

In an H2-matrix [1], the entire matrix is partitioned into
multilevel admissible and inadmissible blocks, where inadmis-
sible blocks are at the leaf level, noted as Ft,s . An admissible
matrix block Rt,s satisfies the following strong admissibility
condition:

max{diam(�t ), diam(�s)} ≤ ηdist(�t ,�s) (1)

where �t (�s) denotes the geometrical support of the
unknown set t (s), diam{·} is the Euclidean diameter of a
set, dist{·, ·} denotes the Euclidean distance between two sets,
and η is a positive parameter that can be used to control the
admissibility condition. An admissible matrix block in an H2-
matrix is represented as

Rt,s = (Vt )#t×k(St,s)k×k (Vs)
T
#s×k (2)

where Vt (Vs ) is called cluster basis associated with cluster
t (s), St,s is called coupling matrix. The cluster bases V in
an H2-matrix has a nested property. This means the cluster
basis for a nonleaf cluster t , Vt , can be expressed by its two

Fig. 1. Illustration of a block cluster tree and resulting H2-matrix partition.
(a) Block cluster tree. (b) H2-matrix structure.

children’s cluster bases, Vt1 and Vt2 , as

(Vt )#t×k =
[
(Vt1)#t1×k1 0

0 (Vt2)#t2×k2

] [
(Tt1)k1×k

(Tt2)k2×k

]
(3)

where Tt1 and Tt2 are called transfer matrices. Because of such
a nested relationship, the cluster bases only need to be stored
for leaf clusters. For nonleaf clusters, only transfer matrices
need to be stored. The H2-matrix is stored in a tree structure,
with the size of leaf-level clusters denoted by lea f si ze. The
number of blocks formed by a single cluster at each tree level
is bounded by a constant due to the way that the matrix is
partitioned in an H2-matrix. This constant is denoted by Csp.
In an H2-matrix, a large matrix block consisting of F and
R is called a nonleaf block NL. As an example, a four-level
block cluster H2-tree is illustrated in Fig. 1(a), where the green
link connects a row cluster with a column cluster, which form
an admissible block, and the red links are for inadmissible
blocks. The resultant H2-matrix is shown in Fig. 1(b), where
the admissible blocks are marked in green and the inadmissible
blocks are marked in red.

III. PROPOSED H2 MMP ALGORITHM—LEAF LEVEL

To compute AH2 × BH2 = CH2 , unlike the existing H2

formatted MMP [1], which is recursive, we propose to perform
a one-way tree traversal from leaf level all the way up to
the minimum level that has admissible blocks. Here, the
tree is inverted with root level at level 0. While doing the
multiplications at each level, we instantaneously compute
the new row and column cluster bases based on prescribed
accuracy to represent the product matrix accurately. We will
use the H2-matrices shown in Fig. 2 to illustrate the proposed
algorithm, but the algorithm is valid for any H2-matrix.

Authorized licensed use limited to: Purdue University. Downloaded on May 12,2022 at 14:21:25 UTC from IEEE Xplore.  Restrictions apply. 



MA AND JIAO : ACCURACY CONTROLLED STRUCTURE-PRESERVING H2-MMP IN LINEAR COMPLEXITY 443

Fig. 2. H2-matrix structure. (a) AH2 . (b) BH2 . (c) CH2 .

Fig. 3. H2-matrix at leaf level. (a) AL
H2 . (b) BL

H2 . (c) CL
H2 .

The structures of AH2 , BH2 , and CH2 matrices, i.e., which
block is admissible and which is inadmissible, are determined
based on the admissibility condition given in (1). During the
product calculation, we will keep the structure of product CH2

matrix while achieving prescribed accuracy. In this section,
we detail the proposed algorithm for leaf-level multiplications.

We start from leaf level (l = L). Let F denote an inad-
missible block, which is stored as a full matrix, and R be an
admissible block. At leaf level, there are in total four matrix-
matrix multiplication cases.

1) Case-1: FA × FB.
2) Case-2: FA × RB.
3) Case-3: RA × FB.
4) Case-4: RA × RB.

The resulting matrix block in C is of two kinds. First, full
matrix block, denoted by FC, marked in red in Fig. 3(c).
Second, admissible block of leaf size, which could be located
at leaf level, denoted by RC,L as marked in green in Fig. 3(c),
which could also appear as a subblock in the nonleaf level l
as marked in blue in Fig. 3(c). The blue blocks in Fig. 3(c)
are only for temporary storage, which will be changed to
green admissible blocks during the upper-level multiplication
to preserve the structure of CH2 matrix. The white blocks
in Fig. 3 denote those blocks that are not involved in the
leaf-level multiplication. Next, we show how to perform each
matrix-matrix multiplication based on the two kinds of target
blocks.

A. Product is an Inadmissible Block (Full Matrix) in C

If the product matrix is a full block FC, we can perform the
four cases of multiplications exactly as they are by full matrix
multiplications. For the admissible leaf blocks in four cases,
we convert them into full matrices and then compute products.
Since the size of these matrices is of lea f si ze, a user-defined
constant, the computational cost is constant for each of such
computations.

B. Product is an Admissible Block in C

If the product is admissible in C whether it is a leaf-level
block or a subblock of a nonleaf admissible block, case-4 can

be performed as it is since the product matrix is obviously
admissible, which also preserves the original row and column
cluster bases. In other words, the row cluster basis of A is that
of C; and the column cluster basis of B is kept in C. To see
this point clearly, we can write

case-4: RA
i, j × RB

j,k = VA
ir SA

i, j

(
VA

jc

)T × VB
jr SB

j,k

(
VB

kc

)T (4)

where subscripts i , j , and k denote cluster index, subscript
r denotes the corresponding cluster is a row cluster, whereas
c denotes the cluster is a column cluster. For example, VA

ir
denotes the cluster basis of row cluster i in A, and VB

kc
denotes

the cluster basis of column cluster k in B. Equation (4) can
be written in short as

RA
i, j × RB

j,k = VA
ir SC

i,k

(
VB

kc

)T (5)

in which SC
i,k is the part in between the two cluster bases,

which denotes the coupling matrix of the product admissible
block in C. Clearly, this case of multiplication does not change
the original row and column cluster bases.

For the other three cases, in existing MMP algorithms,
a formatted multiplication is performed, which is done in
the same way as case-4, i.e., using the original cluster bases
of A and B or preassumed bases as the cluster bases of
the product block. This obviously can be inaccurate since
cases-1–3, if performed as they are, would result in different
cluster bases in the product matrix, which cannot be assumed.
Specifically, case-1 results in a different row as well as column
cluster bases in the product admissible block because

case-1: FA
i, j × FB

j,k (6)

case-2 yields a different row cluster basis since

case-2: FA
i, j × RB

j,k = (
FA

i, j VB
jr

) × SB
j,k × (

VB
kc

)T (7)

whereas case-3 results in a different column cluster basis in
the product admissible block, because

case-3: RA
i, j × FB

j,k = VA
ir × SA

i, j × ((
VA

jc

)T FB
j,k

)
. (8)

If we do not update the cluster bases in the product matrix,
the accuracy of the multiplication is not controllable. There-
fore, in the proposed algorithm, we update row and column
cluster bases for multiplication cases 1–3 based on prescribed
accuracy. We also have to do so with the nested property taken
into consideration so that the computation at nonleaf levels can
be performed efficiently.

For case-1, both row and column cluster bases of the product
block need to be updated. For case-2, we need to use FA

i, j VB
jr to

update the original row cluster basis VA
ir . For case-3, we need

to use (VA
jc
)T FB

j,k to update column cluster basis VB
kc

. Since
there are many case-1–3 products encountered at the leaf
level for the same row or column cluster, we develop the
following algorithm to systematically update the cluster bases.
In this procedure, we also have to take the computation at all
nonleaf levels into consideration so that the changed cluster
bases at the leaf level can be reused at the nonleaf levels.
To achieve this goal, when we update the cluster basis due to
the case-1–3 multiplications associated with this cluster, not
only we consider the product admissible block in the leaf level,
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but also the admissible blocks at all nonleaf levels. In other
words, when computing Ai, j multiplied by B j,k , if the Ci,k

block is part of a nonleaf admissible block, we will take the
corresponding multiplication into account to update the cluster
bases. The detailed algorithms are as follows.

C. Computation of New Cluster Bases in Matrix
Product CH2

First, we show how to calculate the new row cluster bases
of CH2 . Take an arbitrary row cluster i as an example, let
its cluster basis in C be denoted by VC

ir
. This cluster basis is

affected by both case-1 and case-2 multiplications, as analyzed
earlier. We first find all the case-1 multiplications associated
with cluster i , i.e., all FA

i, j × FB
j,k whose product block Ci,k is

admissible. Again, notice that the Ci,k can be either admissible
at leaf level or be part of a nonleaf admissible block. For any
cluster i , the number of FA

i, j is bounded by constant Csp, since
the number of inadmissible blocks that can be formed by a
cluster is bounded by Csp. For the same reason, the number
of FB

j,k for cluster j is also bounded by constant Csp. Hence,
the total number of FA

i, j × FB
j,k multiplications is bounded by

C2
sp, thus also a constant. Then, we calculate the Gram matrix

sum of these products as

GC,L
ir1

=
O(Csp)∑

j=1

O(Csp)∑
k=1

(
FA

i, j F
B
j,k

)(
FA

i, j FB
j,k

)H (9)

in which superscript H denotes a Hermitian transpose, i.e., a
conjugate transpose. We also find all case-2 products associ-
ated with cluster i , which is the number of FA

i, j formed by
cluster i at leaf level in AH2 . This is also bounded by Csp.
Since in case-2 products, FA

i, j is multiplied by an admissible
block in B, and hence VB

jr
, we compute

GC,L
ir2

=
O
(

Csp

)∑
j=1

(
FA

i, j VB
jr

)(
FA

i, j V
B
jr

)H (10)

which incorporates all of the new cluster bases information
due to case-2 products.

For case-3 and case-4 multiplications, the row cluster bases
of AH2 matrix are kept to be those of C. So we account for
the contribution of VA

ir
as

GC,L
ir3

= VA
ir

(
VA

ir

)H
. (11)

The column space spanning GC,L
ir1

, GC,L
ir2

, and GC,L
ir3

would be
the new cluster basis of i , since it takes both the original cluster
basis and the change to the cluster basis due to matrix products
into consideration. Since the magnitude of the three matrices
may differ greatly, we normalize them before summing them
up so that each component is captured. We thus obtain

GC,L
ir

= ̂GC,L
ir1

+ ̂GC,L
ir2

+ ̂GC,L
ir3

. (12)

The ̂ above GC,L
ir1

, GC,L
ir2

, and GC,L
ir3

denotes a normalized
matrix. There are many ways of normalization. In the examples
simulated in this article, the normalization is done by dividing
the matrix by its maximum absolute value. We then perform

an singular value decomposition (SVD) on GC,L
ir3

to obtain the
row cluster bases for cluster i of CH2 based on prescribed
accuracy εtrunc. Notice that the cost of SVD at the leaf level
is O(lea f si ze3), which is a constant. The singular vectors
whose normalized singular values are greater than εtrunc make
the new row cluster basis VC

ir
. It can be used to accurately

represent the admissible blocks related to cluster i in CH2 .
Here, notice that the proposed algorithm for computing matrix-
product cluster bases keeps nested property of VC

ir
. This is

because the Gram matrix sums in (9), (10), and (11) take the
upper-level admissible products into account.

To compute the column cluster bases in CH2 , the steps
are similar to the row cluster basis computation. We account
for the contributions from all the four cases of products to
compute column cluster bases. As can be seen from (6) and
(8), in case-1 and case-3 products, the column cluster bases
are changed from the original ones; whereas in case-2 and
case-4 products, the column cluster bases are kept the same
as those in B.

Consider an arbitrary column cluster k in CH2 . We find all
of the case-1 products associated with k, which is FA

i, j × FB
j,k

with target Ci,k being admissible either at the leaf or nonleaf
level. The number of such multiplications is bounded by C2

sp.
We then compute the sum of their Gram matrices as

GC,L
kc1

=
O(Csp)∑

i=1

O(Csp)∑
j=1

(
FA

i, j FB
j,k

)T (
FA

i, j FB
j,k

)∗
. (13)

Here, the superscript ∗ denotes a complex conjugate. We also
find all of the case-3 products associated with k, which is
RA

i, j × FB
j,k with target Ci,k being admissible either at the

leaf or nonleaf level. Hence, the new column cluster basis takes
a form of (VA

jc
)T × FB

j,k . The number of such multiplications
is also bounded by Csp. The sum of their Gram matrices can
be computed as

GC,L
kc2

=
O(Csp)∑

j=1

((
VA

jc

)T FB
j,k

)T ((
VA

jc

)T FB
j,k

)∗
. (14)

For case-2 and case-4 products, the original column cluster
bases of BH2 are kept in CH2 , hence, we compute

GC,L
kc3

= VB
kc

(
VB

kc

)H
. (15)

We also normalize these three Gram matrices GC,L
kc1

, GC,L
kc2

, and

GC,L
kc3

and sum them up as

GC,L
kc

= ̂GC,L
kc1

+ ̂GC,L
kc2

+ ̂GC,L
kc3

. (16)

We then perform an SVD on this GC,L
kc

and truncate the
singular values based on prescribed accuracy εtrunc to obtain
the column cluster bases VC

kc
for cluster k. Now, this new

column cluster basis VC
kc

can be used to accurately represent
the admissible blocks formed by column cluster k in CH2 .
Notice that the cost of SVD at the leaf level is O(lea f si ze3),
which is a constant.
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D. Computation of the Four Cases of Multiplications With
the Product Block Being Admissible

After computing the new row and column cluster bases of
the product matrix, for the multiplication whose target is an
admissible block described in Section III-B, the computation
becomes the coupling matrix computation since the cluster
bases have been generated. For the four cases of multiplica-
tions, their coupling matrices have the following expressions:

SC
i,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
VC

ir

)H FA
i, j FB

j,k

(
VC

kc

)∗
, case-1(

VC
ir

)H FA
i, j VB

jr
SB

j,k

(
VB

kc

)T (
VC

kc

)∗
, case-2(

VC
ir

)H VA
ir

SA
i, j

(
VA

jc

)T FB
j,k

(
VC

kc

)∗
, case-3(

VC
ir

)H VA
ir

SA
i, j B j SB

j,k

(
VB

kc

)T (
VC

kc

)∗
, case-4.

(17)

The resulting admissible blocks in CH2 are nothing but RC
i,k =

VC
ir × SC

i,k × (VC
kc

)T .
In (17), the B j is the cluster bases product, which is as

shown as follows:

B j = (
VA

jc

)T × VB
jr . (18)

Since it is only related to the original cluster bases, it can be
prepared in advance before the MMP computation. Using the
nested property of the cluster bases, B j can be computed in
linear time for all clusters j , be j a leaf or a nonleaf cluster.

In (17), the (VC
ir
)H VA

ir
is simply the projection of the

original row cluster basis of A onto the new cluster basis
of the product matrix C. Similarly, (VB

kc
)T (VC

kc
)∗ denotes the

projection of the original column cluster basis of B onto
the newly generated column cluster basis in C. The two
cluster basis projections can also be computed for every leaf
cluster after the new cluster bases have been generated. Hence,
we compute

PA
i = (

VC
ir

)H VA
ir

PB
k = (

VB
kc

)T (
VC

kc

)∗ (19)

for each leaf row cluster i , and each column leaf cluster k.
In this way, it can be reused without recomputing for each
admissible block formed by i or k.

In (17), we can also see that the F block is front and back
multiplied by cluster bases. It can be viewed as an F block
collected based on the front (row) and back (column) cluster
bases, which becomes a matrix of rank size. Specifically,
in (17), there are three kinds of collected blocks(

FA
i, j F

B
j,k

)
coll. = (

VC
ir

)H (
FA

i, j FB
j,k

)(
VC

kc

)∗(
FA

i, j

)
coll. = (

VC
ir

)H FA
i, j VB

jr(
FB

j,k

)
coll. = (

VA
jc

)T FB
j,k

(
VC

kc

)∗
(20)

which is used in case-1–3 multiplication, respectively.
As can be seen from (17), the case-1 multiplication with

an admissible block being the target can be performed by
first computing the full-matrix product, and then collecting
the product onto the new row and column cluster bases of
the product matrix. This collect operation is accurate because
the newly generated row and column cluster bases have taken
such a case-1 multiplication into consideration when being

generated. As for the case-2 multiplication, as can be seen
from (17), we can use the Fi, j collected based on the new row
cluster basis and the original column cluster basis, the size of
which is rank, to multiply the coupling matrix of S j,k , and
then multiply the column basis projection matrix since the
column bases have been changed. Similarly, for case-3, we use
the collected block (FB

j,k)coll., and front multiply it by the
coupling matrix of Si, j , and then front multiply a row cluster
basis transformation matrix. As for case-4, we multiply the
coupling matrix of A’s admissible block by the cluster basis
product, and then by the coupling matrix of B’s admissible
block. Since the row and column cluster bases have been
changed to account for the other cases of multiplications,
at the end, we need to front and back multiply the cluster
basis transformation matrices to complete the computation of
case-4. Summarizing the aforementioned, the coupling matrix
in (17) can be efficiently computed as

SC
i,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
VC

ir

)H FA
i, j FB

j,k

(
VC

kc

)∗
, case-1(

FA
i, j

)
coll.S

B
j,kPB

k , case-2

PA
i SA

i, j

(
FB

j,k

)
coll., case-3

PA
i SA

i, j B j SB
j,kPB

k , case-4.

(21)

E. Summary of Overall Algorithm at Leaf Level

Here, we conclude all the operations related to leaf-level
computation when the target is an admissible block.

1) Prepare cluster bases product B.
2) Compute all the leaf-level row and column cluster bases

of product matrix CH2 .
3) Collect the F blocks in AH2 and BH2 based on the new

row and/or column cluster bases, also prepare cluster
bases transformation matrix P.

4) Perform four cases of multiplications.
After leaf-level multiplications, we need to merge four cou-

pling matrices at a nonleaf-level admissible block, as shown
by the blue blocks in Fig. 3(c). These matrices correspond to
the multiplication case of a nonleaf block NL multiplied by
a nonleaf block NL generating an admissible block at next
level. The merged block is the coupling matrix of this next-
level admissible block. It will be used to update next-level
transfer matrices. The details will be given in Section IV.

IV. PROPOSED H2 MMP ALGORITHM—NONLEAF LEVEL

After finishing the leaf-level multiplication, we proceed to
nonleaf-level multiplications. In Fig. 4, we use level L − 1 as
an example to illustrate AL−1

H2 , BL−1
H2 , and CL−1

H2 .
At a nonleaf level l, there are also in total four matrix-matrix

multiplication cases.
1) Case-1: NLA × NLB.
2) Case-2: NLA × RB.
3) Case-3: RA × NLB.
4) Case-4: RA × RB.

where NL denotes a nonleaf block. The resulting matrix block
in C is also of two kinds: 1) nonleaf block NL at this level,
marked in red in Fig. 4(c) and 2) admissible block R, marked
in green in Fig. 4(c). Next, we show how to perform each case
of multiplications based on the two kinds of target blocks.
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Fig. 4. H2-matrix block at nonleaf level (L − 1). (a) AL−1
H2 . (b) BL−1

H2 .

(c) CL−1
H2 .

A. Product is an NL Block in C

The NL target block would not exist for a case-1 multipli-
cation, since if a case-1 multiplication results in an NL block,
that computation should have been performed at previous
level. As for the other three cases of multiplications, since
at least one admissible block is present in the multipliers,
the product must be an admissible block. Hence, we compute
them as having an admissible block as the product, using
the algorithm described in Section IV-B, and associate the
resulting admissible block with the NL block. After the
computation is done at all levels, we perform a backward
split operation to split the admissible block associated with
each NL block to each leaf block of C based on its structure.

B. Product is an Admissible Block in C

Similar to the leaf level, if the product is an admissible
block in C whether at the same nonleaf level or at an upper
level, case-4 can be performed as it is since the product matrix
is obviously admissible, which also preserves the original row
and column cluster bases. We can write

case-4:

RA
i, j × RB

j,k

= VA
ich
r

TA
ir SA

i, j

(
TA

jc

)T (
VA

j ch
c

)T × VB
j ch
r

TB
jr SB

j,k

(
TB

kc

)T (
VB

kch
c

)T

(22)

where T denotes a transfer matrix, and superscript ch denotes
the two children clusters of the nonleaf cluster i . If the cluster
bases at leaf level and the transfer matrices at nonleaf levels
are kept the same as before, then the computation of (22) is
to calculate the coupling matrix at level l, which is

SC
i,k = SA

i, j (B j )SB
j,k . (23)

It is a product of three small matrices whose size is the rank
at this tree level. Rewriting (22) as

case-4:

RA
i, j × RB

j,k = VA
ich
r

TA
ir SC

i,k

(
TB

kc

)T (
VB

kch
c

)T
. (24)

If we exclude the children cluster bases in the front and at
the back, we can see that T serves as the new cluster basis
at this level. In other words, at a nonleaf level l, if we treat
this level as the bottom level of the remaining tree, then the
transfer matrix of the nonleaf cluster is nothing but the leaf
cluster basis of the shortened tree.

Similar to the leaf-level computation, the other three cases
of multiplications will result in a change of cluster basis in
the matrix product. Specifically, case-1 results in a different

row as well as column cluster bases in the product admissible
block because

case-1: NLA
i, j × NLB

j,k (25)

case-2 yields a different row cluster basis since

case-2: NLA
i, j × RB

j,k = (
NLA

i, j VB
jr

) × SB
j,k × (

VB
kc

)T (26)

whereas case-3 results in a different column cluster basis in
the product admissible block, because

case-3: RA
i, j × NLB

j,k = VA
ir × SA

i, j × ((
VA

jc

)T NLB
j,k

)
. (27)

If we do not update the cluster bases in the product matrix,
the accuracy of the multiplication is not controllable. However,
if we update the cluster basis as they are, it is computationally
very expensive since the matrix block size keeps increasing
when we proceed from leaf level toward the root level.
In addition to the cost of changing cluster bases, if we have
to carry out the multiplications at each nonleaf level using
the actual matrix block size, then the computation is also
prohibitive. Therefore, the fast algorithm we develop here is
to perform all computations using the rank size at each tree
level, and meanwhile control the accuracy.

In the proposed algorithm, to account for the updates to
the original matrix during the MMP procedure, the cluster
bases of C are computed level by level, which are manifested
by the changed leaf cluster bases and the transfer matrices
at nonleaf levels. At a nonleaf level, its children-level cluster
bases have already been computed, and they are different from
the original ones in A and B. However, the new cluster bases
have taken the upper-level multiplications into consideration.
Hence, we can accurately represent the multiplication at the
current nonleaf level using newly generated children cluster
bases.

Take case-1 product as an example, where we perform
NLA

i, j ×NLB
j,k obtaining an admissible RC

i,k . We can accurately
represent this product using the children cluster bases of i and
k as follows:

case-1:

NLA
i, j × NLB

j,k

=
[

VC
i1r

VC
i2r

] (
NLA

i, j NLB
j,k

)
coll.

[(
VC

k1c

)T (
VC

k2c

)T

]
(28)

in which(
NLA

i, j NLB
j,k

)
coll.

=
⎡⎢⎣

(
VC

i1r

)H

(VC
i2r

)H

⎤⎥⎦(
NLA

i, j NLB
j,k

)⎡⎣
(
VC

k1c

)∗ (
VC

k2c

)∗⎤⎦ .

(29)

This collected block, (NLA
i, j NLB

j,k)coll., is actually the cou-
pling matrix merged from the four small coupling matrices
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computed at previous level, when dealing with the multiplica-
tion case of having a target block as a subblock in the upper-
level admissible block. It can be written as

(
NLA

i, j NLB
j,k

)
coll. =

[
SC

i1,k1
SC

i1,k2

SC
i2,k1

SC
i2,k2

]
. (30)

Each of the four coupling matrices has been obtained at
previous level. From (29), it is clear that using the nested
property of the cluster bases, the collect operation does not
need to start from leaf level, but using the four blocks obtained
at previous one level.

For case-2 product, it can also be accurately expanded in
the space of the children row cluster bases, and hence

case-2: NLA
i, j × RB

j,k

=
[

VC
i1r

VC
i2r

]
NLA

i, j coll.
TB

jr SB
j,k

(
VB

kc

)T (31)

where

NLA
i, j coll.

=
[ (

VC
i1r

)H (
VC

i2r

)H

]
NLA

i, j

[
VB

j1r

VB
j2r

]
(32)

which is NLA
i, j collected based on the children’s new row

cluster bases in C and the original column cluster bases in B.
From (31), it can be seen that if excluding the children cluster
bases, then NLA

i, j coll.
TB

jr
resembles the FA

i, j VB
jr

in the leaf level
case-2 product. In other words, if we treat the current nonleaf
level as the leaf level, then NLA

i, j coll.
is equivalent to a full

matrix block, whereas T is the leaf cluster basis. An example
of NLA

i, j coll.
block at level (L − 1) in AH2 can be seen as

follows:

(
NLA

i, j

)
coll. =

[ (
FA

i1, j1

)
coll. PA

i1 SA
i1, j2B j2

PA
i2 SA

i2, j1B j1

(
FA

i2, j2

)
coll.

]
(33)

which consists of collected full matrices whose expressions are
shown in (20), and projected coupling matrices of admissible
blocks. Again, using the nested property of both new and
original cluster bases, the collect operation does not need to
start from leaf level, but using the four blocks obtained at
previous one level. Each collect operation only costs O(kl)

3,
where kl is the rank at level l.

Since the cluster bases at the previous level have been
computed, for case-1 and case-2 products at a nonleaf level,
we only need to compute the center block associated with the
current nonleaf level, and this computation can be carried out
in the same way as how we carry out leaf-level computation,
if we treat the current nonleaf level as the leaf level of the
remaining tree. The same is true to case-3 product, where we
have

case-3: RA
i, j × NLB

j,k

= VA
ir SA

i, j

(
TA

jc

)T NLB
j,k coll.

[ (
VC

k1c

)T (
VC

k2c

)T

]
(34)

in which

NLB
j,kcoll.

=
[ (

VA
j1r

)T (
VA

j2r

)T

]
NLB

j,k

[ (
VC

k1c

)∗ (
VC

k2c

)∗
]

.

(35)

We can see that (TA
jc)

T NLB
j,k coll.

resembles the (VA
jc)

T FB
j,k in

the leaf-level case-3 product. An example of collected NL
block in BH2 is given as follows:

(NLB
i, j )coll. =

[
(FB

i1, j1)coll. Bi1 SB
i1, j2PB

j2
Bi2 SB

i2, j1PB
j1 (FB

i2, j2)coll.

]
(36)

which consists of collected full matrices whose expressions are
shown in (20), and projected coupling matrices of admissible
blocks.

Since the cluster bases have been changed at previous level,
we also represent the case-4 product using the new children
cluster bases of i and k, thus

case-4:

RA
i, j × RB

j,k

=
[ (

VC
i1r

) (
VC

i2r

)] RC
i,k,proj

[ (
VC

k1c

)T (
VC

k2c

)T

]
(37)

and

RC
i,k,proj =

[ (
PA

i1

) (
PA

i2

)] (
TA

ir
SC

i,k

(
TB

kc

)T ) [ (
PB

k1

) (
PB

k2

)]
(38)

which can be written in short as

RC
i,k,proj = PA

ich

(
TA

ir SC
i,k

(
TB

kc

)T )
PB

kch (39)

where ch denotes children. Here, there is a cluster basis
transformation matrix in the front and at the back.

C. Computation of the New Nonleaf-Level Transfer Matrices
in C

If the target block is an admissible block at a nonleaf level,
we need to represent it as Rt,s = Tt St,s(Ts)

T in controlled
accuracy. Hence, we need to calculate new row and column
transfer matrices T of product matrix CH2 . First, we introduce
how to calculate the row transfer matrices. Similar to leaf level,
case-1 and 2 products result in a change in the row cluster
basis and hence row transfer matrix. Case-3 and 4 products
do not require a change of transfer matrix if the cluster bases
have not been changed at previous level. However, since the
cluster bases have been changed at previous level, the transfer
matrix requires an update as well.

For an arbitrary nonleaf cluster i , we first find all of the
case-1 products associated with i . Each of such a product
leads to a coupling matrix merged from the four coupling
matrices obtained at previous level computation, denoted by
(NLA

i, j NLB
j,k)coll.. Using them, we calculate the Gram matrix

sum as

GC,l
ir1

=
O
(

C2
sp

)∑
#(i,k)=1

(
NLA

i, j NLB
j,k

)
coll.

((
NLA

i, j NLB
j,k

)
coll.

)H
. (40)
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The second step is to take case-2 multiplications at a nonleaf
level into consideration for row transfer matrix calculation
of product matrix CH2 . We find all the collected nonleaf
blocks NLA

i, j coll.
of cluster i at level l in AH2 matrix and

multiply them with corresponding transfer matrices TB
jr

from
BH2 matrix. And we calculate the Gram matrix sum as

GC,l
ir2

=
O
(

Csp

)∑
j=1

((
NLA

i, j

)
coll.T

B
jr

)((
NLA

i, j

)
coll.T

B
jr

)H
. (41)

Finally, we count the contributions from case-3 and case-
4 products by computing

GC,l
ir3

= PA
ich TA

ir

(
TA

ir

)H (
PA

ich

)H
. (42)

Again, we normalize these three Gram matrices and obtain

GC,l
ir

= ̂GC,l
ir1

+ ̂GC,l
ir2

+ ̂GC,l
ir3

. (43)

We then calculate an SVD of this GC,l
ir

and truncate the
singular values based on prescribed accuracy εtrunc to obtain
row transfer matrix TC

ir
for cluster i at nonleaf level. Notice

that the size of GC,l
ir

is rank kl , and hence the SVD’s cost is
only O(k3

l ).
Similarly, we can compute the new column transfer matrices

for nonleaf cluster k, which is TC
kc

. The first part is

GC,l
kc1

=
O(Csp)∑

i=1

((
NLA

i, j NLB
j,k

)
coll.

)T ((
NLA

i, j NLB
j,k

)
coll.

)∗
. (44)

The second part is

GC,l
kc2

=
O
(

Csp

)∑
j=1

((
TA

jc

)T (
NLB

j,k

)
coll.

)T ((
TA

jc

)T (
NLB

j,k

)
coll.

)∗
. (45)

The third part is

GC,l
kc3

= (
PB

kch

)T (
TB

kc

)∗(TB
kc

)T (
PB

kch

)∗
. (46)

Then we normalize the three Gram matrices and sum them up
as

GC,l
kc

= ̂GC,l
kc1

+ ̂GC,l
kc2

+ ̂GC,l
kc3

. (47)

After we perform an SVD on GC,l
kc

matrix and truncate the
singular values based on prescribed accuracy εtrunc, we get
new column transfer matrix TC

kc
. Again, notice that the size of

GC,l
kc

is rank kl , and hence the SVD’s cost is only O(k3
l ).

D. Computation of the Four Cases of Multiplications With
the Product Block Being Admissible

Now, we obtain both row and column transfer matrices for
product matrix CH2 ; hence, the four multiplications become
the computation of the coupling matrices, so that the admissi-
ble block at the current level has a form of Rt,s = Tt St,s(Ts)

T .

The coupling matrix S’s calculation is similar to that of leaf
level in (17), which has the following expressions:

SC
i,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
TC

ir

)H (
NLA

i, j NLB
j,k

)
coll.

(
TC

kc

)∗
, case-1(

TC
ir

)H (
NLA

i, j

)
coll.T

B
jr SB

j,k

(
VB

kc

)T (
VC

kc

)∗
, case-2(

VC
ir

)H VA
ir SA

i, j

(
TA

jc

)T (
NLB

j,k

)
coll.

(
TC

kc

)∗
, case-3(

VC
ir

)H VA
ir SA

i, j B j SB
j,k

(
VB

kc

)T (
VC

kc

)∗
, case-4.

(48)

Again, we should prepare some matrix products in advance
so that we can achieve linear complexity MMP for constant
rank H2-matrix. For nonleaf levels, the cluster bases product
B j can be readily calculated using children’s cluster bases
based on the nested property. For example, given a nonleaf
cluster j , we can generate B j by using the cluster bases
product of its children clusters j1 and j2, which is shown
as

B j = (
TA

j1c

)T B j1TB
j1r

+ (
TA

j2c

)T B j2TB
j2r

. (49)

In addition, since the cluster bases product B j only involve
original cluster bases in AH2 and BH2 matrices, we can
prepare the abovementioned B j for all leaf and nonleaf clusters
before MMP algorithm. In addition, the nonleaf-level cluster
bases projection (transformation) can also be calculated using
children’s ones as shown in (19). The formulas are given as
follows:

PA
i = (

VC
ir

)H VA
ir

= (
TC

i1r

)H PA
i1 TA

i1r
+ (

TC
i2r

)H PA
i2 TA

i2r

PB
k = (

VB
kc

)T (
VC

kc

)∗
= (

TB
k1c

)T PB
k1

(
TC

k1c

)∗ + (
TB

k2c

)T PB
k2

(
TC

k2c

)∗
. (50)

We also compute the collected NL matrix block in AH2 and
BH2 at current level l by the following equation:(

NLA
i, j

)(l)
coll. = (

TC
ir

)H (
NLA

i, j

)(l+1)

coll. TB
jr(

NLB
j,k

)(l)
coll. = (

TA
jc

)T (
NLB

j,k

)(l+1)

coll.

(
TC

kc

)∗ (51)

where superscript l denotes tree level. After we prepare the
matrix products in (49)–(51), we can proceed to calculate the
coupling matrices in (48) efficiently as

SC
i,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
TC

ir

)H (
NLA

i, j NLB
j,k

)(l)
coll.

(
TC

kc

)∗
, case-1(

NLA
i, j

)(l)
coll.S

B
j,kPB

k , case-2

PA
i SA

i, j

(
NLB

j,k

)(l)
coll., case-3

PA
i SA

i, j B j SB
j,kPB

k , case-4.

(52)

All the coupling matrices calculation are performed in rank
size kl . So the computational cost is O(k3

l ). After coupling
matrices calculation in (52), all the admissible products at
this nonleaf-level multiplication can be represented as RC

i, j =
TC

ir
SC

i, j TC
jc

.

E. Summary of Overall Algorithm at Each Nonleaf Level

The cluster bases products B j have been computed for all
clusters j before the MMP starts, since they are only related
to the original cluster bases.
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At each nonleaf level, we do the following.
1) Collect four blocks in an NL block in AH2 to a block

of O(kl+1) size, using the newly generated children row
cluster bases of C (transfer matrices if children are not at
the leaf level) and the original column cluster bases of B
(or transfer matrices). This is to generate the (NLA

i, j )coll.,
shown in (32).

2) Collect four blocks in an NL block in BH2 to a block
of O(kl+1) size, using the original row cluster bases of
A (or transfer matrices) and the new children column
cluster bases of C (transfer matrices if children are not
at the leaf level). This is to generate (NLB

j,k)coll., shown
in (35).

3) Merge four blocks in an R block in CH2 . This corre-
sponds to the (NLA

i, j NLB
j,k)

(l)
coll. in (52).

4) Calculate new row and column transfer matrices of
product matrix CH2 at this level.

5) Prepare cluster bases projections PA
i , PB

k , and perform
an NL block collect shown in (51).

6) Perform four cases of multiplications shown in (52).
After we finish one-way bottom-up tree traversal to calculate

block matrix products at all the levels, i.e., from leaf level all
the way up to minimal admissible level, we need to perform
a postprocessing for the coupling matrices associated with the
NL blocks in CH2 . They exist because of the multiplications
cases described in Section IV-A. This could be efficiently
done by performing one-way top-down split process, the same
as the matrix backward transformation shown in [1]. This
postprocessing stage is to split the coupling matrices in NL
to lower level admissible or inadmissible blocks.

V. EIGHT BY EIGHT MMP EXAMPLE

To help understand the overall algorithm, here, we use an
eight by eight MMP as an example to explain the computation
step by step. The matrices A and B shown in Fig. 2 can each
be viewed as a matrix of size eight. Now, we show how these
two matrices are multiplied to obtain C, as shown in Fig. 2.
Each matrix is partitioned into green (admissible) blocks, and
red (inadmissible) ones. The partition is performed using the
admissibility condition given in (1). For this example, we can
see that there are eight leaf clusters, and the minimal level that
has admissible blocks is L − 1, i.e., one level above the leaf
level L. This is because the largest admissible block size is
two. There are no green blocks whose size is four or larger.
Therefore, the computation only needs to be performed from
leaf level to L−1, the minimal level that has admissible blocks.
Hence, in this simple example, there are only two levels of
computation.

We start from the leaf level, and compute all the matrix
multiplications whose matrix size is the lea f si ze, which is
one in this example. In other words, we find all the leafblocks
in A, and multiply them by the corresponding leafblocks in
B. These blocks are shown in Fig. 3(a) and (b). For example,
A1, j ( j = 1, 2, . . . , 6) are leaf blocks in A formed by leaf
cluster i = 1 with other clusters, out of which A1,1, A1,2,
A1,4, A1,6 are inadmissible; and the rest are admissible. Notice
that the number of both kinds of blocks formed by a single

cluster is bounded by constant Csp. Similarly, in B, B1, j ( j =
1, 2, . . . , 6) are all the leaf blocks formed by leaf cluster i = 1;
B3, j ( j = 1, 2, . . . , 4) are leaf blocks formed by leaf cluster
i = 3, and so on. Notice that in the two figures, the white
blocks are not zero, but admissible blocks at level L − 1, and
hence they are not involved in the leaf-level multiplication.

Next, we proceed to perform A×B at the leaf level. This is
to compute all Ai, j ×B j,k that exists at this level, and store the
result in Ci,k . Therefore, we go through every leaf cluster i ,
and finish up the computation of all Ai, j × B j,k , and then the
multiplication is done at the leaf level. Since for each cluster
i , it can only form Csp blocks with other clusters; there are
at most Csp Ai, j blocks; similarly, for each cluster j , it can
only form Csp blocks with other clusters; there are at most Csp
B j,k . Hence, for each cluster, the number of multiplications to
do is bounded by C2

sp, a constant.
Ai, j can only fall into two kinds, one is a full matrix FA

i, j

(red block), and the other is admissible RA
i, j (green block).

For any FA
i, j , it gets multiplied by a leaf block B j,k , which is

also either full FB
j,k or admissible RB

j,k . This corresponds to the
case-1 and case-2 products shown in Section III. Similarly, for
every RA

i, j , it gets multiplied by either FB
j,k or admissible RB

j,k .
This corresponds to the case-3 and case-4 products shown in
Section III.

If the target block, Ci,k , is inadmissible, we simply multiply
the leaf blocks from A and B as they are. However, if the
Ci,k is admissible, then we need to update the row and
column cluster bases of Ci,k to ensure the accuracy of the
multiplication. This is because case-1 and case-2 products will
change the row cluster bases of admissible Ci,k block, i.e., we
cannot use the original cluster bases of i any more to represent
Ci,k ; and similarly, case-1 and case-3 products will change the
column cluster bases of admissible Ci,k . The change of cluster
bases is done in the proposed algorithm in a systematical way.
Basically, for each cluster i , we consider the contributions
from all the case-1 multiplications of FA

i, j FB
j,k , and those

from case-2 multiplications using FA
i, j V

B
j , and use them to

update the row cluster basis of cluster i in the product matrix,
as shown in (12). Since the number of these multiplications is
bounded by O(C2

sp), a constant, the cost is small for updating
the row cluster bases. We update the column cluster bases in a
similar way. After updating the cluster bases at the leaf level,
the admissible Ci,k can be accurately represented by the new
leaf-level cluster bases. The remaining computation is simply
to compute the four cases of multiplications based on the new
bases. This is to compute the new coupling matrix of each
admissible target, as shown in (17).

Then we move to the level L − 1. The blocks at this level
are shown in Fig. 4, where a red block denotes a nonleaf
block (block composed of both inadmissible and admissible
subblocks), and a green one is admissible. Each block is of
size two now, i.e., two times of the leaf block size. As can
be seen, there are now four clusters at this level, each of
which is a nonleaf cluster of size two. The multiplications
at this level are again to compute all Ai, j × B j,k that exists at
this level, and store the result in Ci,k at the same level. Out
of the three blocks, one of them must be admissible for the
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multiplication to be performed; otherwise, i.e., if all of them
are nonleaf, then the multiplication has already been done at
the children level of this level. So for every cluster i at level
L − 1, we use Ai, j that exists at this level, which can be
either an NLA

i, j or an RA
i, j , to multiply B j,k at the same level,

which also can be either an NLB
j,k or a RB

j,k . This results
in the four cases of multiplications discussed in Section IV.
Apparently the matrix size is doubled, the computation must
be performed on a double-sized matrix. In fact, using the pro-
posed algorithm, the multiplication is performed on a rank size
for each level. Take NLA

i, j × RB
j,k as an example, this product

can be accurately represented using the row cluster bases made
of the two children’s cluster bases of i . This is because the
two children cluster bases of i have already been updated to
account for such a multiplication. To see this point clearly, one
should realize that the NLA

i, j is composed of four subblocks
formed between i ’s two children clusters, and j ’s two children
clusters. Similarly, RB

j,k is also made of four subblocks. The
multiplications between NLA

i, j ’s four subblocks and RB
j,k’s four

subblocks have been used to change the row cluster bases of i1
and i2, the i ’s two children cluster. Therefore, the multiplica-
tion of the NLA

i, j RB
j,k becomes using the NLA

i, j coll.
which is of

rank size, obtained from collecting NLA
i, j block using the two

children’s new row cluster bases of cluster i and the original
column cluster bases of j as shown in (32), to multiply the
coupling matrix of R j,k , which is also of rank size, to obtain
the coupling matrix of the target admissible block.

For the example shown in Fig. 4, take nonleaf cluster i = 2
as an example, it forms four blocks: A2,1 is an NL block;
A2,2 is an NL block; and A2,3 and A2,4 are R blocks. The
A2,1 will be multipled by B1,1 (NL block), B1,2 (NL block),
B1,3 (NL block), and B1,4 (R block), respectively. However,
only A2,1 × B1,4 need to be computed since its target block
A2,4 is green, whereas other three multiplications are all an
NL multiplied by an NL generating an NL, which has been
computed using the children-level blocks already. We finish
all the block multiplication at this level, each of which is one
of the four cases shown in Section IV, then the computation
is done at this level.

The end result of the MMP is C, which is stored as an
H2-matrix, but its cluster bases have been changed based on
accuracy, and the coupling matrix of each admissible block has
been obtained. The inadmissible blocks are also computed.

VI. ACCURACY AND COMPLEXITY ANALYSIS

In this section, we analyze the accuracy and computational
complexity of the proposed algorithm to compute H2-MMPs.

A. Accuracy

Different from existing formatted H2-MMPs [1], in the
proposed new algorithm, the accuracy of the product is
directly controlled by εtrunc. No formatted multiplications are
performed, and the cluster bases are changed to represent
the updates to the original matrix accurately. This makes
each operation performed in the proposed MMP controlled by
accuracy or exact. When generating an H2-matrix to represent

Fig. 5. Illustration of the 2-layer bus structure [7], where the number of
wires in each layer, m, ranges from 8 to 128.

the original dense matrix, the accuracy is controlled by εH2 ,
which is the same as in [15] and [16].

B. Time and Memory Complexity

The proposed MMP involves O(L) levels of computation.
At each level, there are 2l clusters. For each cluster, the cost
of changing the cluster bases at the leaf level due to four
cases of multiplications is to perform O(Csp)

2 multiplications
followed by an SVD, and each of which has a constant cost,
as can be seen from (13), (14), and (15). The cost of changing
the cluster bases at the nonleaf level due to the four cases of
multiplications is also to perform O(Csp)

2 multiplications for
each cluster followed by an SVD, and each of which has a
cost of O(kl)

3, as can be seen from (40)–(42). Notice that
the NL blocks in A and B are collected level by level, at each
level, there are 2l O(Csp) NL block, and each collect operation
also costs O(kl)

3 only. Other auxiliary matrices are generated
using a similar computational cost. The SVD is performed on
a matrix of lea f si ze for each cluster at the leaf level, and
hence the cost is a constant. At a nonleaf level l, the SVD is
performed on a matrix of rank size kl for each cluster, and
hence the cost is O(kl)

3.
As for the computation of the four cases of multiplications

at each level, each case involves O(Csp)
2 multiplications for

each cluster, and each of which costs O(kl)
3 at the nonleaf

level and O(lea f si ze)3 at the leaf level as can be seen from
(21), and (52).

Hence, the time complexity of the proposed MMP can be
found as

Time Complexity =
L∑

l=0

C2
sp2l O(kl)

3 = C2
sp

L∑
l=0

2l O(kl)
3.

(53)

And the storage for each block is O(k2
l ), with each cluster

having Csp blocks. So the memory complexity is

Memory Complexity=
L∑

l=0

Csp2l O(kl)
2 =Csp

L∑
l=0

2l O(kl)
2.

(54)

Recall kl is the rank at tree level l. Hence, (53) and (54) show
that the overall complexity is a function of rank kl . Taking into
account the rank’s growth with electrical size as shown in [5],
we can get the time and memory complexity of proposed MMP
for different rank scaling. For constant-rank H2-matrices, since
kl is a constant irrespective of matrix size, the complexity of
the proposed direct solution is strictly O(N) in both CPU time
and memory consumption, as shown as follows:
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Fig. 6. MMP performance for AH2 × BH2 of large-scale capacitance extraction matrices of a 2-layer cross bus structure. (a) Time scaling versus N .
(b) Memory scaling versus N .

For constant kl :

Time Complexity = C2
spk3

l

L∑
l=0

2l = O(N) (55)

Memory Complexity = Cspk2
l

L∑
l=0

2l = O(N). (56)

For electrodynamic analysis, to ensure a prescribed accuracy,
the rank becomes a function of electrical size, and thereby
tree level. Different H2-matrix representations can result in
different complexities, because their rank’s behavior is dif-
ferent. Using a minimal-rank H2-representation, as shown by
[5], the rank grows linearly with electrical size for general
3-D problems. In a VIE, kl is proportional to the cubic root
of matrix size at level l, because this is the electrical size at
level l. Hence for a VIE, (53) and (54) become

For kl linearly growing with electrical size:

Time Complexity = Csp
2

L∑
l=0

2l

[(
N

2l

) 1
3
]3

= O(N logN)

(57)

Memory Complexity = Csp

L∑
l=0

2l

[(
N

2l

) 1
3
]2

= O(N).

(58)

So the time complexity of the proposed MMP algorithm for
3-D electrodynamic analysis is O(NlogN), and the memory
complexity is O(N).

VII. NUMERICAL RESULTS

In order to demonstrate the accuracy and low computational
complexity of the proposed fast H2-matrix-matrix multipli-
cation for general H2-matrices, we use H2-matrices result-
ing from large-scale capacitance extraction and volume IE
(VIE)-based scattering analysis as examples. The capacitance
extraction matrix is shown in [7]. The VIE formulation is
based on [13], [14], and [16] with SWG vector bases for

Fig. 7. Illustration of the large-scale M1–M8 on-chip interconnect embedded
in inhomogeneous dielectrics [7], with the conductor number increased from
96, 144, 192, 240, 288, to 336.

expanding electric flux density in each tetrahedral element.
A variety of large-scale examples involving over one million
unknowns are simulated on a single CPU core to examine
the accuracy and complexity of the proposed MMP algorithm.
The capacitance matrix is used to demonstrate the proposed
MMP algorithm performance for constant-rank H2-matrices.
We also simulate large scale 2-D and 3-D scattering examples
to examine the time and memory complexity of the proposed
MMP for variable rank cases. The computer used has an
Intel(R) Xeon(R) CPU E5-2690 v2 running at 3 GHz, and
only a single core is employed to carry out the computation.

The accuracy of the proposed MMP is assessed by using
the following criterion:

εrel = ||CH2 x − AH2(BH2 x)||F

||AH2(BH2 x)||F
(59)

where AH2 ×(BH2 ×x) is used as the reference solution, since
given an H2 matrix, an MVP can be carried out without any
approximation, as shown in [1]. In generating the reference
solution, we first compute y = BH2 × x , and then compute
AH2 × y, both of which are done in exact arithmetic. The
proposed solution is generated by first computing an MMP
of AH2BH2 to obtain CH2 , and then compute CH2 x . The x
is chosen to be a random vector to assess the accuracy for
arbitrary vectors.

A. Two-Layer Cross Bus

The first example is the capacitance extraction of a two-
layer cross bus structure, as illustrated in Fig. 5. In each layer,
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Fig. 8. MMP performance for AH2 × BH2 of large-scale M1–M8 capacitance extraction in inhomogeneous dielectrics. (a) Time scaling versus N .
(b) Memory scaling versus N .

there are m conductors, and each conductor has a dimension
of 1×1× (2m +1) m3. We simulate a suite of such structures
with 16, 32, 64, 128, and 256 conductors, respectively. The
parameters used in the H2-matrix construction are lea f si ze =
30, admissibility condition [1] η = 1.0, and εH2 = 10−4. The
H2-matrix for this example is constructed based on the method
described in [16], where εH2 is εacc in [16]. For the proposed
H2 MMP, the εtrunc is chosen to be 10−2, 10−4, and 10−6,
respectively to examine the error controllability. The matrix A
is chosen to be the discretized double layer potential operator,
whose i j th element can be written as

Ai j =
∫ ∫

Si

∫ ∫
S j

(r − r�) · n̂(r�)
4π |r − r�|3 d S�d S (60)

where n̂ denotes a unit vector normal to Sj , r denotes the
position vector of an observation point, and r� denotes that of
a source point. The B matrix is chosen to be the discretized
single layer potential operator, whose i j th element is

Bi j =
∫ ∫

Si

∫ ∫
S j

1

4π |r − r�|d S�d S. (61)

As shown in Fig. 6, the proposed MMP exhibits clear
linear complexities in time and memory regardless of the
choice of εtrunc. Certainly, the smaller the εtrunc, the larger the
computational cost. From Table I, we can see the accuracy of
the proposed MMP is very good, and it is also controllable.
By choosing a smaller εtrunc, the MMP error can be reduced.

B. Large-Scale 3-D M1–M8 On-Chip Interconnect in
Inhomogeneous Dielectrics

We consider a more complicated example, which is a large-
scale on-chip interconnect embedded in multiple layers of
dielectrics as shown in Fig. 7. The relative permittivity of the
interconnect structure is 3.9 in M1, 2.5 from M2 to M6, and
7.0 from M7 to M8. The structure involves 48 conductors,
the discretization of which results in 26 112 unknowns. Let
z be the vertical direction from M1 to M8, and y pointing
into the article. The 48-conductor structure is duplicated

TABLE I

H2 MMP ERROR εrel AT DIFFERENT εtrunc FOR LARGE-SCALE CAPACI-
TANCE EXTRACTION MATRICES AS A FUNCTION OF N

horizontally (along x-direction), with the length extended as
well along the y-direction, resulting in 96, 144, 192, 240,
288, and 336 conductors, the number of unknowns of which
are 26 112, 103 680, 232 704, 413 184, 645 120, 928 512, and
1 263 360, respectively.

An IE-based solution for capacitance extraction results in
the following dense system of equations:

Gq = v (62)

where

G =
[

Pcc Pcd

Pdc Pdd

]
, q =

[
qc

qd

]
, and v =

[
vc

0

]
in which qc and qd denote charges on the conductor panels,
and dielectric-interface panels, respectively. The vc is the
potential attached to a conductor panel. In this example,
we choose A = B = G, whose matrix entries can be found
in [7]. The H2-tree structure of G is built using lea f si ze = 20,
and η = 4.0. The method in [7] is used to construct the
H2 matrix with a polynomial order equal to three in every
direction. For the proposed H2-MMP, the εtrunc is chosen to
be 10−2, 10−4, and 10−6, respectively, to examine the error
controllability.

As shown in Fig. 8, the proposed MMP exhibits clear linear
complexities in time and memory regardless of the choice
of εtrunc. In addition, the smaller the εtrunc, the larger the
computational cost, which is as expected. The accuracy of
the proposed MMP is assessed by using the same criterion as
shown in (59). From Table II, very good accuracy is observed,
and it is also controllable via the choice of εtrunc. Smaller εtrunc
results in better accuracy.

Authorized licensed use limited to: Purdue University. Downloaded on May 12,2022 at 14:21:25 UTC from IEEE Xplore.  Restrictions apply. 



MA AND JIAO : ACCURACY CONTROLLED STRUCTURE-PRESERVING H2-MMP IN LINEAR COMPLEXITY 453

Fig. 9. MMP performance for AH2 × AH2 of 2-D slab scattering from 4λ to 28λ. (a) Time scaling versus N . (b) Memory scaling versus N .

Fig. 10. MMP performance for AH2 × AH2 of scattering from a 3-D cube array. (a) Time scaling versus N . (b) Memory scaling versus N .

TABLE II

H2 MMP ERROR MEASURED BY εrel SHOWN IN (59) AT DIFFERENT εtrunc FOR LARGE-SCALE M1–M8 CAPACITANCE EXTRACTION MATRICES IN

INHOMOGENEOUS MATERIALS AS A FUNCTION OF N

C. Large-Scale Dielectric Slab Scattering

We then simulate a dielectric slab with εr = 2.54 at
300 MHz, the structure of which is the same as [16, Fig. 10].
The thickness of the slab is fixed to be 0.1λ0. The width
and length are simultaneously increased from 4λ0, 8λ0, 16λ0,
to 28λ0. With a mesh size of 0.1λ0, the resultant N ranges
from 22 560 to 1 098 720 for this suite of slab structures. The
parameters used in the H2-matrix construction are lea f si ze =
40, η = 2.0, and εH2 = 10−3. The H2-matrix is constructed
based on the method described in [16]. For the proposed H2

MMP, the εtrunc is chosen to be 10−2, 10−3, 10−4, 10−5, and
10−6, respectively, to examine the computational complexity
and error controllability of the proposed MMP.

The IE formulation used in this example is the following
VIE:

Ei (r)

= D(r)
ε(r)

−
∫

V

[
μ0ω

2κ(r�)D(r�)

+ ∇
(

∇� ·
(

κ(r)
D(r�)
ε0

))]
g(r, r�)dv �

(63)

where g(r, r�) = e− j k0|r−r�|/4π |r − r�|, ω being the angular
frequency, κ the contrast ratio defined as (ε(r) − ε0)/ε(r),
D(r�) the electric flux density, while k0 is the free space
wavenumber. By expanding the unknown electric flux density
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TABLE III

H2 MMP ERROR εrel AS SHOWN IN (59) FOR THE 2-D SLAB SCATTERING

PROBLEM FOR DIFFERENT εtrunc AS A FUNCTION OF N

D(r�) in terms of SWG basis functions each with a coefficient
Dn , and then testing the resulting equation using Galerkin
method with Dm(r), we obtain the following linear system
of VIE:

ZD = E. (64)

A and B are both chosen to be equal to Z in this example.
The detailed expression of Z can be found in [16, eq. (3)].

Based on [5], the rank’s growth rate with electrical size for
2-D slab is lower than linear, and being a square root of the
log-linear of the electric size. Substituting such a rank’s growth
into the complexity analysis in (53) and (54), we obtain linear
complexity in both memory and time. In Fig. 9(a), we plot the
MMP time with respect to N , for all different choices of εtrunc.
It is clear that the smaller εtrunc value, the larger the MMP
time. However, the complexity remains the same as linear
regardless of the choice of εtrunc. The memory cost is plotted
in Fig. 9(b). Obviously, it scales linearly with the number of
unknowns. The error of the proposed MMP is measured in
the same way as shown in (59). In Table III, we list the error
as a function of εtrunc. Excellent accuracy can be observed in
the entire unknown range. Furthermore, the accuracy can be
controlled by εtrunc, and overall smaller εtrunc results in better
accuracy.

In addition, we compare the CPU run time, memory and
accuracy of the proposed MMP with those of [1] using this
example. The εtrunc = 1e − 2 is chosen in the proposed
algorithm so that a similar level of MMP accuracy can be
generated for a fair comparison. For the N = 359 040 case,
the CPU time of the algorithm in [1] is found to be 875.54 s,
whereas the proposed takes 849.08 s only. The memory of
[1] is 4.36 GB, while the proposed takes 5.03 GB since it
stores additional quantities. As for accuracy, [1] algorithm
yields an MMP error of 4.59e − 2; while the proposed is
1.49e − 2. As can be seen, although the proposed algorithm
updates cluster bases while [1] does not, the proposed does
not cost a longer CPU time. This can be attributed to its one-
way tree traversal procedure, as well as the fact that the time
spent on updating cluster bases is not much as compared to
other computations.

D. Scattering From Large-Scale Array of Dielectric Cubes

Next, we simulate a large-scale array of dielectric cubes at
300 MHz, whose structure is the same as [16, Fig. 13]. The
relative permittivity of the cube is εr = 4.0. Each cube is
of size 0.3λ0 × 0.3λ0 × 0.3λ0. The distance between adjacent
cubes is kept to be 0.3λ0. The number of the cubes is increased

TABLE IV

Csp AS A FUNCTION OF N FOR THE DIELECTRIC CUBE ARRAY

TABLE V

H2 MMP ERROR εrel AT DIFFERENT εtrunc FOR 3-D CUBE ARRAY

along the x-, y-, and z- directions simultaneously from 2 to
16, thus producing a 3-D cube array from 2 × 2 × 2 to
16 × 16 × 16 elements. The number of unknowns N is,
respectively, 3024, 24 192, 193 536, and 1 548 288 for these
arrays. Like previous example, A and B are both chosen to be
equal to VIE-based system matrix Z, whose matrix elements
can be found in [16, eq. (3)]. During the construction of H2-
matrix, we set lea f si ze = 20, η = 1, and εH2 = 10−2. For
the proposed H2 MMP, the εtrunc is chosen as 10−2, 10−3,
and 10−4.

For a cubic growth of unknowns in 3-D problems,
we observe that constant Csp is quite different for different
unknowns, as can be seen from Table IV. It is thus impor-
tant to analyze the performances of the proposed MMP as
Memory/Csp and Multi plication time/C2

sp respectively to
examine the true scaling rate. In Fig. 10(a) and (b), we plot the
H2-matrix-matrix multiplication time divided by C2

sp, and the
storage cost normalized with Csp with respect to N . As can
be seen, their scaling rate with N agrees very well with our
theoretical complexity analysis. For the largest case, which is
a 16 ×16 ×16 cube array having thousands of cube elements,
the error is still controlled to be as small as 0.809% using
εtrunc = 10−4. The error of the proposed MMP is listed
in Table V for this example, which again reveals excellent
accuracy and error controllability of the proposed MMP.

We also compare the accuracy of the proposed MMP
with existing MMP [1] using this 3-D example. As shown
in Table V, the proposed MMP has much better accuracy, and
also it is controllable. It is worth mentioning that the H2Lib at
http://www.h2lib.org/doc/files.html is not ready for computing
the matrix-matrix multiplications done in this article, and
hence we implemented our own version of the MMP of [1] to
compare with the proposed new MMP algorithm.

VIII. CONCLUSION

In this article, we develop a fast accuracy-controlled algo-
rithm to compute H2-MMPs for general H2-matrices. This
proposed algorithm not only has explicitly controlled accuracy,
but also generates a rank-minimized representation of the
product matrix based on prescribed accuracy. The row and
column cluster bases are instantaneously changed so that
the new matrix content generated during the MMP can be
accurately represented. This ensures that each multiplication
performed in the proposed MMP is well controlled by accu-
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racy. Meanwhile, we retain the complexity to be linear for
constant-rank H2-matrices. The proposed algorithm has been
applied to calculate H2-MMPs for large-scale capacitance
extraction matrices whose kernel is static and real-valued
and electrically large VIEs whose kernel is oscillatory and
complex-valued. For constant-rank H2-matrices, the proposed
MMP has an O(N) complexity in both time and memory.
For rank growing with the electrical size linearly, the pro-
posed MMP has an O(NlogN) complexity time and O(N)
complexity in memory. H2-matrix products with millions of
unknowns are simulated on a single core CPU in fast CPU
run time. Comparisons with existing H2-MMP algorithm have
demonstrated clear advantages of the proposed new MMP
algorithm.
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