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Abstract— The ill-conditioned numerical system arising from
an electromagnetic analysis is often due to the discretized
curl–curl operator which has both zero eigenvalues and large ones
inversely proportional to the square of the smallest feature size.
In this work, we analytically decompose the discretized curl–curl
operator into a gradient divergence operator and a Laplacian
without numerical computation. We further split the field solution
into a gradient field (curl-free component) and a divergence-free
one to take advantage of the decomposition. The gradient diver-
gence operator vanishes when acting on the divergence-free com-
ponent of the field solution. As a result, we can replace the highly
ill-conditioned curl–curl operator with a Laplacian for computing
the divergence-free component regardless of inhomogeneity and
source settings. Since the Laplacian is positive definite and well-
conditioned, the new system matrix can converge quickly in a
small number of iterations. The method is applied to accelerate
time-domain solutions of Maxwell’s equations in ill-conditioned
problems such as integrated circuits (ICs). Numerical results have
validated its accuracy and efficiency.

Index Terms— Curl–curl operator, fast method, full-wave
analysis, ill-conditioned systems, implicit time-domain method,
integrated circuits (ICs), iterative solvers, large-scale analysis,
layout extraction, layout modeling, layout simulation, Maxwell’s
equations, on-chip circuits, time-domain method.

I. INTRODUCTION

ILL-CONDITIONED problems are frequently encountered
in electromagnetic analysis. A representative class of

ill-conditioned problems is the integrated circuit (IC) problem.
Such a problem is large scale and deeply multiscaled. The
underlying materials are inhomogeneous, and the conductors
are lossy. Furthermore, broadband of frequencies from dc
to high frequencies needs to be considered. In this band,
both static (gradient field) and full-wave components (whose
curl is not zero) co-exist in the field solution. The two also
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couple with each other. We cannot solve static equations alone.
Meanwhile, the frequency is not that high; we cannot ignore
the static component either in the field solution.

There have been a large number of efforts addressing the
aforementioned challenges [1]–[18], including both frequency-
and time-domain methods, spanning the partial differential
equation (PDE) solvers such as the finite difference method
(FDM) [19], the finite element method (FEM) [20], and the
integral equation (IE)-based method. In the frequency domain,
the system matrix resulting from the discretization of an
ill-conditioned problem like ICs has a large condition number,
and it is indefinite, which renders an iterative solution difficult
to converge and a direct solution challenging to obtain an
accurate solution. In the time domain, the system matrix
can be made positive definite in a PDE solver. However,
the time step is restricted by the smallest space step in a
conventional explicit time marching for stability. In an ill-
conditioned problem, the time step restricted by the stability
criterion can be orders of magnitude smaller than that required
by sampling accuracy for a given input spectrum. This makes
a traditional explicit simulation not efficient for solving ill-
conditioned problems. In an implicit unconditionally stable
time domain method, the time step can be enlarged and it
is independent of the space step, however, one has to solve an
ill-conditioned system matrix.

In existing methods, there are two major approaches to
solving an ill-conditioned numerical system. One is fast and
error-controlled direct solvers such as [21]–[23]. The other
is iterative solvers. The latter can preserve the sparsity of
the original system matrix in a PDE-based method. Existing
techniques to expedite an iterative PDE solution are mainly
based on finding a good preconditioner for solving the under-
lying sparse system of equations [24]–[27]. Among these
techniques, diagonal, block diagonal, Jacob, symmetric suc-
cessive over-relaxation (SSOR) preconditioners, and so on are
computationally efficient to construct. But their performance
is not reliable and it is problem-dependent. Another type
is to use approximate inverse or incomplete factorization-
based preconditioners. This kind of preconditioners is more
robust and can exhibit a faster convergence. However, they
are computationally expensive. Other preconditioners suffer
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from a similar performance and cost tradeoff. In this work,
we propose a different method to accelerate the iterative
solution of an ill-conditioned full-wave system of equations.
This method is to directly change the original system to its
Laplacian counterpart to solve without any approximation.

We analyze the property of the system matrix resulting
from a PDE-based full-wave analysis. We find that the system
matrix representing the curl–curl operator is the root cause of
its slow convergence. This matrix’s smallest eigenvalue is zero,
whereas its largest one is inversely proportional to the square
of the smallest feature size in the problem being studied.
In an IC problem, this translates to a huge condition number.
To overcome this problem, we find a way to decompose
the discretized curl–curl operator into a gradient divergence
operator and a Laplacian. We also achieve such a decomposi-
tion without any numerical computation, by constructing both
operators via an analytical means. To take advantage of the
good property of the Laplacian, we further split the field into
a gradient field (curl-free) and a divergence-free component
to solve, instead of solving the unknown field as a whole.
The gradient divergence operator vanishes when acting on the
divergence-free component of the field. Hence, we can replace
the curl–curl operator by the Laplacian when it operates on the
divergence-free component of the field solution. Meanwhile,
the curl–curl operator vanishes when it acts on the gradient
field component. As a result, the transformed numerical system
is composed of Laplacian operators only for solving both the
curl-free and divergence-free components. Since the Laplacian
is full-rank and well-conditioned, the updated system matrix
can be converged in a very small number of iterations, whose
number does not grow with the matrix size either. Meanwhile,
no theoretical approximation is made, and the accuracy is
retained. In [28], we presented this idea to accelerate the
frequency-domain solution of full-wave Maxwell’s equations.
In this paper, we show how to accelerate time-domain solu-
tions of Maxwell’s equations. We develop new formulations in
the time domain to fully utilize the analytical decomposition
of the curl–curl operator and the good property of Laplacian,
based on which we solve challenging ill-conditioned problems
like ICs, where static and full-wave field solutions co-exist,
and conductors are highly lossy.

It is worth mentioning that the proposed work is very dif-
ferent from methods in [29]–[32]. In those methods, the diver-
gence of D or J condition is imposed to solve the two
curl equations of the Maxwell’s equations, whereas we only
solve the two curl equations without imposing the divergence
condition. Note that the divergence of D equation is implicitly
satisfied by the curl of H equation, i.e., Ampere’s law. In [29]–
[32], the gradient of divergence (being zero) is then added
in the curl–curl equation to improve the conditioning of the
resultant numerical system. Since the gradient of divergence
of D is not equal to zero in regions where sources exist, or in
conductors, and so on, only part of the computational domain
is affected by this addition. Furthermore, in an inhomoegenous
problem where permittivity ε is nonuniform, the augmentation
of the gradient of the divergence of εE does not turn the
curl–curl of E into a Laplacian either. Methods in [29]–[32]
have to scale the gradient divergence term with the goal of

producing a term close to Laplacian in matrix norm, but
the scaled term does not yield an exact Laplacian either.
In contrast, we directly work on the discrete curl–curl operator
to decompose it into a discrete gradient divergence and a
Laplacian. This decomposition is always true regardless of
nonuniform permittivity and nonzero sources. We thus obtain
an exact Laplacian and also in the entire computational
domain. We further split the electric field into a gradient field
and a divergence-free component to solve, instead of solving
the field as a whole, to take advantage of the decomposition.
The proposed work can be used to effectively solve problems
concerned in [29]–[32] as well.

The rest of the article is organized as follows. In Section II,
we elaborate the proposed method. In Section III, we present
extensive numerical results to demonstrate the accuracy and
efficiency of the proposed method in solving ill-conditioned
problems. We summarize this work in Section IV.

II. PROPOSED METHOD

Discretizing the entire physical layout of an IC or other
physical problems into a mesh including lossy conductors and
inhomogeneous dielectric materials, let e be a vector of all
electric field unknowns in the mesh, whose length is Ne.

A PDE-based solution of full-wave Maxwell’s equations
results in the following linear system of equations in time
domain [33], [34]:

Dε
d2e
dt2

+ Dσ
de
dt

+ Se = −dJ
dt

(1)

where J is a vector of current density, Dε and Dσ are
sparse matrices associated with permittivity and conductivity,
respectively. If using a finite difference time domain (FDTD),
both Dε and Dσ are diagonal whose i th entry represents the
permittivity and conductivity at the i th edge. If using an FEM,
Dε and Dσ are related to the mass matrix, i.e., the inner product
of vector basis functions used to expand unknown electric
fields.

The S in (1) is a sparse matrix representing a discretized
∇ × μ−1∇ × operation. As an example, in the FDTD, S can
be written as the following [33]:

S = ShD1/μSe (2)

where Sh has Nh columns, Se has Nh rows, and Nh is the total
number of patches, which is also the number of magnetic field
unknowns. The D1/μ is nothing but a diagonal matrix of the
inverse of permeability. As another example, in the FEM, S
can be written as the following:

S = 1

μ

∫
(∇ × Ni · ∇ × N j)dV (3)

where N denotes the vector basis function used in each element
to expand unknown electric fields, and the integration is
performed over the computational domain V .

The S is rank deficient, whose smallest eigenvalue is
zero; and largest one is inversely proportional to the square
of the smallest feature size. This renders the condition
number of S extremely large when modeling micro- and
nano-meter scale structures. Inspired by the vector identity
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∇ × ∇ × A = ∇(∇ · A) − ∇2A, we find that matrix S can
be decomposed into the following form:

S = −V0V
T
0a/μ + L (4)

where V0 denotes the right nullspace of S, thus

SV0 = 0 (5)

and V
T
0a denotes the left nullspace of S, satisfying

V
T
0aS = 0 (6)

and L denotes the discretized Laplacian −∇2 divided by
μ. To understand (4), one should realize that S denotes a
discretized ∇ × μ−1∇ × operation. Hence, its right nullspace
is a gradient field (represented by V0 in (4)), whereas its left
nullspace is a divergence field (represented by V

T
0a). If using

the FDM, in a uniform grid, V0 = V0a since S is symmetric.
If using the FEM with a symmetric formulation, V0 = V0a

holds true irrespective of the regularity of the mesh.
We further find that both V0 and V0a can be constructed

from mesh information analytically. Hence the decomposition
shown in (4) can be achieved without any computational cost.
Specifically, the V0’s column number is equal to the number
of nodes −1 in the mesh. The i th column of V0 corresponds
to the i th node, the number of nonzero entries in which is
equal to the number of edges connected to node i . At each
node in the mesh, we can generate one column of V0 as the
following without any need for numerical computation [35].

1) For the edge whose electric field reference direction
enters the node, the nonzero entry is (1/ li), at the
row corresponding to the global index of the edge (and
thereby its E unknown).

2) For the edge whose electric field reference direction
leaves the node, the nonzero entry is −(1/ li),

where li is the length of the i th edge. The above is true for
both the FDM in a grid and the FEM in an irregular mesh.
The left nullspace V0a can also be generated without any need
for computation. It is the same as V0 in the FEM, or the FDM
using a uniform grid. When using the FDM in a nonuniform
grid, the V0a is different from V0. But the only difference is
to change the length to an average length, which is also the
reason why we use subscript a to denote the left nullspace.
Specifically, each node corresponds to one column of V0a ,
which can be built as follows.

1) For the edge whose electric field reference direction
enters the node, the nonzero entry is (1/ li,ave), at the
row corresponding to the global index of the edge (and
thereby its E unknown).

2) For the edge whose electric field reference direction
leaves the node, the nonzero entry is −(1/ li,ave).

Where the average length li,ave is the length averaged from
the edge and the other edge connected to the node along
the same direction. One can readily verify that (5) and (6)
are satisfied in the FDM and FEM, using the V0 and V0a

analytically constructed in the aforementioned way.
Let Vh be S’s eigenvector whose eigenvalue λ is nonzero,

then SVh = λVh holds true, and hence

V
T
0aVh = V

T
0aSVh/λ = 0 (7)

using (6). As a result, we find the following important
property:

SVh = −V0V
T
0aVh/μ + LVh = LVh . (8)

This means when operating on the high-frequency modes
whose curl is not zero, we can replace S by L! Compared to
S, L is of full rank and well-conditioned with a low condition
number, as it is a Laplace operator. Many iterative solvers
can solve a Laplace operator fast, and even converge it in a
constant number of operations independent of matrix size [36].

If the solution of (1) is dominated by the full-wave com-
ponent whose curl is nonzero, then we can directly replace
S therein by L, and solve it efficiently. But for problems
involving both static and full-wave solutions, we need to
carefully develop algorithms to fully take advantage of (8).
Next, we show such an algorithm in the time domain.

We discretize (1) in the time domain as the following:
Dε(en+1 + en−1 − 2en) + �tDσ (en+1 − en) + �t2Sen+1

= −�t2 ∂Jn+1

∂ t
(9)

where en+1, en and en−1 denotes the electrical field solutions
at the (n + 1)th, nth and (n − 1)th time step, respectively,
and �t is the time step. Moving all the terms associated with
previous time steps to the right-hand side, we obtain(
Dε + �tDσ + �t2S

)
en+1

= −�t2 ∂Jn+1

∂ t
− Dε

(
en−1 − 2en

) − �tDσ (−en). (10)

The above is the so-called backward difference scheme [34],
which is unconditionally stable, and hence allowing for the
use of an arbitrarily large time step irrespective of space
step. One can also use other unconditionally stable methods
to discretize (1) in time such as the Newmark method [34],
the Crank-Nicholson method, and so on. However, all of them
need to solve a system matrix, and this system matrix is a
weighted sum of Dε , Dσ , and S matrices. In what follows,
we will use the system matrix resulting from the backward
difference to present the proposed method, but the method is
equally applicable to other implicit time marching schemes.

From (10), it can be seen that one has to solve the following
system matrix: (

Dε + �tDσ + �t2S
)
. (11)

This matrix is ill-conditioned especially when �t is large.
This is because the ratio of �t2S to Dε is the ratio of �t2/�t2

a ,
where �ta is the time step restricted by the space step as that
determined by the CFL condition. Clearly, the larger the �t ,
the more important the term of �t2S as compared to Dε term.
For a time step ten times larger than the CFL condition, the Dε

term already becomes negligible, as it is 100 times smaller than
�t2S. Since S is singular, numerically, its solution is difficult
to converge. When there is conductor loss, Dσ term exists and
also it is orders of magnitude different from Dε , which makes
an iterative solution of (11) even more difficult to converge.

To utilize (8), we decompose the field solution into two
parts

e = V0y0 + eh (12)

Authorized licensed use limited to: Purdue University. Downloaded on May 12,2022 at 14:14:32 UTC from IEEE Xplore.  Restrictions apply. 



4616 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 69, NO. 11, NOVEMBER 2021

where V0y0 is its gradient component, and eh is its Vh

component, so that (8) can be utilized to speed up the solution
of high-frequency components. The (12) can be rewritten as

e = [
V0 I

][y0

eh

]
(13)

which is equivalent to using the column space of
[
V0 I

]
to

expand the field solution. To find out the unknown coefficient

vector

[
y0

eh

]
, we can substitute (13) into (10), and also test the

resultant equation by the transpose of the column space used
to expand e, thus using the following to multiply (10) in front:[

V
T
0a

I

]
. (14)

As a result, we obtain[
V

T
0a

I

](
Dε + �tDσ + �t2S

)[
V0 I

][yn+1
0

en+1
h

]

=
[

V
T
0a

I

](
−�t2 ∂Jn+1

∂ t
− Dε

(
en−1 − 2en

) − �tDσ (−en)

)
(15)

which can be rewritten as[
V

T
0a

(
Dε + �tDσ

)
V0 V

T
0a

(
Dε + �tDσ

)
(
Dε + �tDσ

)
V0 Dε + �tDσ + �t2S

][
yn+1

0

en+1
h

]

=
[

V
T
0ab

b

]
(16)

where

b = −�t2 ∂Jn+1

∂ t
− Dε

(
en−1 − 2en

) − �tDσ (−en). (17)

In the first row of (16), S vanishes because of (6); whereas
in the second row of equation, S vanishes in the first term
because of (5).

The only S left in (16) operates on en+1
h , which is in the

space of Vh . Using (8), we can replace S by L, obtaining[
V

T
0a

(
Dε + �tDσ

)
V0 V

T
0a

(
Dε + �tDσ

)
(
Dε + �tDσ

)
V0 Dε + �tDσ + �t2L

][
yn+1

0

en+1
h

]

=
[

V
T
0ab

b

]
. (18)

As a result, the lower right block of the system matrix
becomes a well-conditioned matrix to solve. Notice that L
is positive-definite and of full rank.

If we solve (18) as it is, although the entire system matrix
is composed of well-conditioned submatrices, the convergence
of its iterative solution can be slow because the submatrices
are very different in magnitude, and hence unbalanced. We,
therefore, propose to use the following P as a preconditioner
to solve (18), thus

P =
[

V
T
0a

(
Dε + �tDσ

)
V0 V

T
0a

(
Dε + �tDσ

)
Dε + �tDσ + �t2L

]
. (19)

Fig. 1. Structure of a test-chip interconnect.

Using the above, the solution of (18) is found to converge
in a very small number of iterations. This is because the
off-diagonal block is much smaller than the diagonal one in
the second block row of (18) in an ill-conditioned problem.

In (19), in order to solve V
T
0a(Dε+�tDσ )V0 fast, we further

transform it to the solution of two Laplacians as follows.
We expand the static component V0y0 into

V0y0 = V0d y0d + V0cy0c (20)

where V0d are the V0 columns associated with the dielectric
nodes, and V0c are those associated with conductor nodes.
Then the V

T
0a(Dε + �tDσ )V0 subsystem of equations can be

rewritten as[
V

T
0da

(
Dε

)
V0d V

T
0da

(
Dε

)
V0c

V
T
0ca

(
Dε

)
V0d V

T
0ca

(
Dε + �tDσ

)
V0c

][
y0d

y0c

]

=
[

b0d

b0c

]
(21)

where V0d , V0da, V0c, V0ca are all normalized, V0da and V0ca

are left nullspace vectors, and b0d and b0c are corresponding
right-hand sides. The above can be written in short as[

Mdd Mdc

Mcd Mcc

][
y0d

y0c

]
=

[
b0d

b0c

]
(22)

where

Mdd = V
T
0da

(
Dε

)
V0d (23)

Mdc = V
T
0da

(
Dε

)
V0c (24)

Mcd = V
T
0ca

(
Dε

)
V0d (25)

Mcc = V
T
0ca

(
Dε + �tDσ

)
V0c. (26)

Note that Mcc is inside conductors, and hence the displace-
ment current is much smaller than the conduction current.
Then the term (Dε) can be ignored. Therefore, we have

Mcc ≈ V
T
0ca

(
�tDσ

)
V0c. (27)

To solve (22), first, we solve the Schur complement of the
Mdd, which is(

Mdd − MdcM
−1
cc Mcd

)
y0d = b0d − MdcM

−1
cc b0c. (28)

Because in this matrix, Dσ dominates in magnitude and
the other matrix blocks’ magnitude is much smaller, we have
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Fig. 2. Eigenvalues of L as compared to those of S.

Fig. 3. Comparison between the proposed method and the traditional FDTD
in simulating an on-chip interconnect.

‖Mdd‖ � ‖MdcM
−1
cc Mcd‖. Therefore, (28) can be rewritten

accurately as

Mddy0d = b0d − MdcM
−1
cc b0c. (29)

After y0d is obtained, substitute it into the first equation,
and y0c can be computed as

Mccy0c = b0c − Mcdy0d . (30)

Note that the two diagonal blocks, denoted by Mdd and
Mcc, are nothing but discretized ∇ · ε∇ and ∇ · σ∇ in
the mesh. Hence, (29) and (30) can be rapidly solved by
fast Laplacian solvers such as a multigrid iterative method,
which can converge in a constant number of steps for Laplace
operators.

Fig. 4. Structure of an IBM plasma package interconnect.

Fig. 5. Comparison between the proposed method and the traditional FDTD
in simulating a package interconnect.

The preconditioner shown in (19) can further be simplified
to the following upper triangular matrix:
P

=

⎡
⎢⎢⎣

V
T
0da

(
Dε

)
V0d V

T
0da

(
Dε

)
V0c V

T
0da

(
Dε

)
V

T
0ca

(
�tDσ

)
V0c V

T
0ca

(
Dε+�tDσ

)
Dε +�tDσ + �t2L

⎤
⎥⎥⎦.

(31)

It can be used to effectively solve (18) because the blocks
omitted are orders of magnitude smaller than the matrix blocks
residing in the same block row of equations in an IC layout.
Furthermore, the solution of the above preconditioner can
be computed efficiently since via a backward substitution
procedure, it only requires solving the three diagonal blocks,
and each of which is a Laplacian, and hence can be solved
fast.

III. SIMULATION RESULTS

In this section, we simulate ill-conditioned on-chip, pack-
age, and antenna problems to validate the accuracy and
efficiency of the proposed algorithm. We use an implicit
FDTD to generate a numerical system for solving full-wave
Maxwell’s equations in the time domain, the solution of
which is accelerated by the proposed fast method. Instead of
solving (11) which is ill-conditioned, the transformed Lapla-
cian system (18) is solved. Due to the good property of the
Laplacian matrix, the iterative solution of (18) converges in a
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Fig. 6. Comparison of the S-parameters between the results from the proposed method and the experimental data. (a) Magnitude. (b) Phase.

Fig. 7. Voltage distribution of an on-chip power grid at 10 GHz. Power rails in (a) M5 and (b) M6 layers.

Fig. 8. Comparison between the proposed method and the traditional FDTD
in simulating an on-chip power grid.

few steps to obtain the desired accuracy. The proposed method
is equally applicable to the FEM and other PDE methods.

A. Test-Chip Interconnect

A test-chip interconnect is simulated, whose x − z cross-
sectional view is shown in Fig. 1, and it extends into the

paper (y-direction) for 2000 μm. The dimensions along the
x-, and z-direction are 300 μm, and 3.19 μm respectively.
The yellow regions are conductors, the conductivity of which
is 5.8 × 107 S/m. A nonuniform grid is used to discretize
the structure, which has 23, 20, and 7 cells along x-, y-
, and z-direction, respectively. The boundary conditions on
all of the outermost boundaries are a Neumann bound-
ary condition (i.e., left open), except for the bottom plane
which is a perfect electric conductor (PEC). The bottom
plane is used as a ground for the circuit simulation in this
example.

We calculated (‖SVh − (LVh)‖/(‖SVh‖) and found it to
be 3.3239 × 10−10, which verifies (8). Another check we
did is to evaluate (‖S − (−V0V

T
0a/μ + L)‖)/(‖S‖), which

is found to be 3.2806 × 10−16, and hence validating (4).
In Fig. 2, we plot the eigenvalues of S, and L respectively.
It is obvious that S is ill-conditioned while L is not. All those
eigenvalues whose magnitude is 105 or smaller are actually
zero eigenvalues of S. They cannot be computed as exact
zeros because of machine precision: their values are about
15 or 16 orders of magnitude smaller than the largest one.
The condition number of S is found to be 4.6737 × 1027,
whereas that of L is only 2.5 × 108.
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Fig. 9. Time-domain voltage of a cavity-backed patch antenna. (a) τ = 0.2 ns. (b) τ = 0.05 ns.

Fig. 10. Input impedance of the cavity-backed patch antenna. (a) and (b) Input resistance (Ohms).

We use a Gaussian derivative as the current source with
τ = 10−11 s, which is injected from the bottom PEC plane to
the middle conductor. The time step is chosen as �t = 10−12 s,
which is solely determined by accuracy, while a conventional
explicit marching must use a time step as small as 10−16 s
in this example to ensure stability. We iteratively solve the
transformed Laplacian system (18) using GMRES with (31)
as the preconditioner. The GMRES solution quickly converges
in 14 steps with a relative residual smaller than 10−5. In con-
trast, if we solve the original numerical system (11), it takes
400 steps to converge, while (Dε + �tDσ + �t2L) only
takes one step to reach a relative residual of 10−15. When
solving (22), it only takes three steps to achieve a relative
residual of 10−5 to solve Mdd. And solving Mcc takes nine
steps to achieve a relative residual of 10−5. The time domain
voltage obtained using the proposed method is compared with
that from a traditional FDTD in Fig. 3, which reveals an
excellent agreement. The traditional FDTD code is what is

used to simulate the same example in [18], which generates
the same results as measured data as can be seen from [18,
Figs. 5 and 7].

B. IBM Plasma Interconnect

The second example is an IBM plasma package inter-
connect, whose x − z cross section is shown in Fig. 4,
and it extends into the paper for 1 cm. The blue regions
are conductors, with a conductivity of 5.8 × 107 S/m. The
dimension along x-, y-, and z-direction is 0.88, 10, and
0.165 mm, respectively. Neumann boundary conditions are
used to truncate the outermost boundaries except for the
bottom plane which is a PEC. The current source is injected
from the bottom plane to conductor 1 at the near end.
A nonuniform Cartesian grid is used to discretize the structure,
which has 22, 22, and 5 cells along the x-, y-, and z-directions,
respectively. First, we calculate (‖SVh − LVh‖)/(‖SVh‖) and
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find it to be 1.6572 × 10−12, which again verifies (8).
The (‖S − (−V0V

T
0a/μ + L)‖)/(‖S‖) is also evaluated, and

found to be 2.8933 × 10−16.
When solving the problem in time domain, we use GMRES

with (31) as the preconditioner to ietratively solve the trans-
formed Laplacian system. The solution is shown to converge
in 14 steps, achieving a relative residual of 10−7. In the
preconditioner, we solve (Dε + �tDσ + �t2L) instead of
(Dε + �tDσ + �t2S). The multigrid method solves (Dε +
�tDσ + �t2L) with only 1 step achieving accuracy of 10−11.
In contrast, if (Dε + �tDσ + �t2S) is solved, it takes 500 steps
to achieve an accuracy of 0.001. When solving (22), Mdd

only takes tree steps to reach 10−5 accuracy and Mcc takes
no greater than 17 steps to reach 10−5. A Gaussian derivative
pulse with τ = 10−10 s is used here as the current source.
Based on the sampling accuracy, �t = 10−11 s is chosen as
the time step, which is independent of the space step. The time
domain voltage between conductor 1 and the ground plane
simulated from the proposed method is compared with the
result from a traditional FDTD in Fig. 5. Excellent agreement
is observed. This example also has reference S-parameter data
provided by IBM for comparison. We hence do a Fourier
transform on both voltage and current source in time domain,
and compare extracted frequency-domain S-parameters with
IBM’s reference data. As can be seen from Fig. 6, good
agreement is observed.

C. On-Chip Power Grid

The third example is a large-scale on-chip power grid.
It consists of four metal layers and three dielectric layers,
truncated by a Neumann boundary condition, where all the
boundaries are left open from the outside. The dimension
along the x-, y-, and z-directions is 400, 700, and 2.838 μm,
respectively. The power and ground rails are interleaved, and
vias are located at the intersection of like rails in adjacent
metal layers. On each metal layer, the metals are distributed
periodically, the period of which is 5.12, 7.56, 10.24, and
11.34 μm, on M5, M6, M7, and M8 layers, respectively. With
a nonuniform Cartesian grid, the discretization of the structure
results in 4 397 222 unknowns. A current source is injected
from a ground rail at (x = 195.578 μm, y = 348.3 μm)
to a power one at (x = 199.680 μm, y = 348.3 μm) in
the middle of the grid at the bottom metal layer, which is
a Gaussian derivative pulse with τ = 10−9 s. The proposed
method uses a large time step of �t = 10−10 s to perform
time marching, which is solely determined from the input
spectrum instead of space step. The voltage distributions at
10 GHz across the power grid on metal 5 and metal 6 layers
are shown in Fig. 7. The voltage sampled at the input terminal
is plotted in Fig. 8, and compared with the FDTD result. Good
agreement is observed. This problem is solved using an upper
triangular preconditioner shown in (31). It only takes six steps
to reach a relative residual of 0.007. In the preconditioner,
solving (Dε + �tσ + �t2L) takes three steps to achieve an
accuracy of 10−5. And solving Mdd takes one step to reach
10−5 accuracy, while for Mcc, it takes no greater than 15 steps
to achieve the same accuracy. In contrast, solving the original

S-based implicit time-domain system of equations takes about
300 steps to converge to a relative residual of 0.007, and
costing 56 820 s in total, whereas the proposed method only
takes 8989.2 s, which is more efficient.

D. Cavity-Backed Microstrip Patch Antenna

The fourth example is a cavity-backed path antenna example
shown in [20]. The problem is multiscaled with the thickness
of the substrate, 0.08779 cm, much smaller than other dimen-
sions. The cavity is of size 7.5 by 5.1 cm. The antenna patch
size is W = 3.4 cm by L = 5 cm. There is a 50 � load at
the point xL = −2.2 cm and yL = −1.5 cm. The current is
injected at the x f = 1.22 cm and y f = 0.85 cm point, which
is a Gaussian derivative pulse with τ = 0.2 ns. A nonuniform
Cartesian gird is used to discretize the structure. There are 40,
38, and 3 cells along the x-, y-, and z-directions, respectively.
The antenna patch is modeled with a finite conductivity
of 5.8 × 107 S/m. In the time marching, a time step of
�t = 10−11 s is used. The voltage obtained at the current
source location is plotted in Fig. 9(a) in comparison with
the reference FDTD simulation. Good agreement is observed.
This problem is less ill-conditioned compared to the previous
IC problems. However, the number of iterations used, 26,
is still much smaller than the 158 iterations one has to use
if solving the original numerical system. This example has
frequency-domain reference results available in [20] from
1 to 4 GHz. We hence shortened the τ correspondingly to
0.05 ns to cover the desired frequency band, and extracted
frequency-domain input impedance. The time-domain compar-
ison with conventional FDTD is shown in Fig. 9(b), whereas
the frequency-domain comparison with reference data given
in [20] is shown in Fig. 10. As can be seen, good agreement
is observed, which further verifies the accuracy of the proposed
method.

IV. CONCLUSION

In this work, a fast method is developed to accelerate the
time-domain solution of ill-conditioned electromagnetic prob-
lems. In this method, we perform a computation-free decom-
position of the discretized curl–curl operator into a gradient
divergence operator and a Laplacian. We further expand the
unknown field solution into a gradient field and a divergence-
free component. The former is in the nullspace of the curl–curl
operator, and hence the curl–curl operator vanishes when
operating on it. For the latter component (divergence-free
one), the curl–curl operator can be rigorously replaced by a
Laplacian. As a result, the original ill-conditioned numerical
system is changed to a Laplacian-based one that is much better
conditioned. Since the Laplace operator is positive definite and
has guaranteed convergence in its iterative solution, we are
able to significantly accelerate the time-domain solution of ill-
conditioned electromagnetic problems. Numerical experiments
have demonstrated its accuracy and efficiency. The method can
be used to accelerate various PDE methods in time domain.
In addition, not only full-wave problems, eddy-current, and
magneto-quasi-static problems involving the singular curl–curl
operator can also be solved by using the proposed method.
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