
612 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 31, NO. 3, AUGUST 2008

A Recovery Algorithm of Linear Complexity in the
Time-Domain Layered Finite Element Reduction
Recovery (LAFE-RR) Method for Large-Scale
Electromagnetic Analysis of High-Speed ICs

Houle Gan and Dan Jiao, Senior Member, IEEE

Abstract—Time-domain layered finite element reduction re-
covery (LAFE-RR) method was recently developed for large-scale
electromagnetic analysis of high-speed integrated circuits (ICs).
This method is capable of analytically and rigorously reducing the
system matrix of a 3-D multilayer circuit to that of a single-layer
one regardless of the original problem size. In addition, the re-
duced system matrix preserves the sparsity of the original system
matrix. In this paper, an efficient algorithm is proposed to recover
the volume unknowns in the time-domain LAFE-RR method. This
algorithm constitutes a direct solution of the matrix formed by
volume unknowns in each layer. This direct solution possesses a
linear complexity in both central processing unit (CPU) time and
memory consumption. The cost of matrix inversion is negligible.
The cost of matrix solution scales linearly with the matrix size.
Numerical and experimental results have demonstrated the accu-
racy and efficiency of the proposed algorithm.

Index Terms—Electromagnetic analysis, finite-element methods,
time domain analysis, very large scale integrated circuits.

I. INTRODUCTION

C IRCUIT THEORY has guided very large scale integrated
(VLSI) design and analysis for more than three decades.

As on-chip circuits have scaled into the nanometer regime, full-
wave electromagnetics-based analysis has increasingly become
essential for three major reasons. 1) Reduced feature sizes: at
the 45 nm processing technology node and beyond, it becomes
necessary to print features that are several times less than the
wavelength of light (193 nm) being used in optical lithography.
In this regime, the wave nature of light is manifest. This induces
extreme proximity effects, which need to be comprehended and
compensated for by optical proximity correction (OPC). OPC
determines the photomask patterns that enable drawn layout
features to be faithfully and accurately reproduced by optical
lithography onto the wafer. It has emerged as a major bottle-
neck in achieving efficient turnaround time for integrated cir-
cuit (IC) data preparation and high-yield manufacturing. The
enabling technology of accurate model-guided OPC is compu-
tational electromagnetics. 2) Increased clock frequency: cur-
rently the clock frequency of microprocessors is in the giga-
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hertz regime. Since it is necessary to analyze the chip response
to harmonics five times the clock frequency, it is expected that
interconnects would have to be analyzed with certain electro-
magnetic effects incorporated at high frequencies. The impor-
tance of electromagnetic (EM) analysis at tens of gigahertz has
been quantitatively demonstrated, via simulation and real sil-
icon measurements, in [22] and [6]. 3) Increased level of in-
tegration: this calls for increasing levels of the integration of
RF, analog, and digital circuits on the same chip, which leads
often to undesirable coupling and sometimes to system failure.
For instance, switching currents induced by logic circuits cause
ringing in the power-supply rails and in the output driver cir-
cuitry. This, in turn, couples through the common substrate to
corrupt sensitive analog signals on the same chip. Prevailing cir-
cuit-based signal integrity paradigms are reaching their limits
of predictive accuracy when applied to high-frequency mixed-
signal settings. To sustain the scaling and integration of digital,
analog, mixed-signal, and RF circuitry, full-wave electromag-
netics-based analysis is indispensable.

In addition to the full-wave electromagnetics-based analysis,
very-large-scale analysis is also essential for the design of
high-speed VLSI circuits. Take a full-chip interconnect net-
work for power delivery as an example; it involves more than
seven metal layers, a large number of nonuniform dielectric
stacks, m chip area, and millions of
vias and wires. In addition, active power managements result
in large processor current variations and fast transient droops
and noises in the global power supply network, which demands
very large-scale electromagnetic analysis. Already, the impact
of noise due to die-package interaction, substrate coupling,
etc., can be seen at all levels of a power delivery network:
from chip to package to motherboard to the voltage regulator
module. The move towards integrating thousand cores on a
single chip will exacerbate the problems even more. Therefore,
it is important to develop large-scale electromagnetic modeling
and simulation methods.

In recent years, researchers in both VLSI circuits and elec-
tromagnetic fields have initiated the development of innovative
computational EM techniques for on-chip problems [1]–[16].
These techniques can be categorized into two classes: partial
differential equation (PDE)-based solvers and integral equation
(IE)-based ones. In the former, the finite difference time do-
main (FDTD) method is a representative one. Two-dimensional
FDTD approaches have been developed for the full-wave
modeling of on-chip transmission lines. For 3-D structures, an
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FDTD solver is much more computationally expensive. In the
latter, the partial element equivalent circuit (PEEC) method is
a representative one [1], [2], [8], [14]. PEEC was first utilized
to solve quasistatic problems. It was then extended to full-wave
analysis. Recently, surface-based PEEC methods have also been
developed which reduce significantly the number of unknowns
involved in a volume-integral-equation-based PEEC method
[2], [8]. Another surface integral equation based formulation
was developed in [3]. A fast precorrected FFT scheme was
formulated to accelerate the iterative solution of the dense ma-
trix equation. However, the multilayered dielectric has not yet
been included. Integral equation based methods have also been
developed in [7], [9], [10], [15], and [16] for the application to
on-chip problems.

Ultra-large-scale IC design results in numerical problems of
ultra large scale, requiring billions of parameters to describe
them accurately. In general, to solve a matrix equation of
degrees-of-freedom, the optimal computational complexity one
can hope for is linear complexity . For the VLSI circuit
problem, however, even is prohibitively high since is
too large. In [4]–[6], [12], [13], efforts have been made to reduce
the problem size from to with much less than

. In [12] and [13], a time-domain layered finite element reduc-
tion recovery (LAFE-RR) method was developed for high-fre-
quency modeling and simulation of large-scale on-chip circuits.
This method rigorously reduces the matrix of the original mul-
tilayer system to that of a single-layer one irrespective of the
original problem size. More importantly, the matrix reduction
is achieved analytically, and hence the CPU and memory over-
heads are minimal. In addition, the reduction preserves the spar-
sity of the original matrix. The method applies to any arbitrarily
shaped multilayer structure.

The recovery of volume unknowns in the time-domain
LAFE-RR method involves the solution of a matrix formed by
volume unknowns in a single layer. Although this matrix is
sparse, its computation can be expensive when the matrix size
is large. An advanced sparse solver such as the multifrontal
method [17], [18] requires much more than operations
and storage to solve this matrix when is large, with

being the matrix size. In this work, the complexity will be
reduced to in both memory and CPU time. This is the
optimal complexity one can hope for to solve problems with

parameters.
The remainder of this paper is organized as follows. In

Section II, the time-domain LAFE-RR method is outlined. In
Section III, the proposed recovery algorithm of linear com-
plexity is presented. In Section IV, numerical and experimental
results are given to demonstrate the accuracy and efficiency of
the proposed algorithm. Section V relates to our conclusions.

In the description that follows, the stack-growth direction is
defined as , the number of volume unknowns in a single layer
is denoted by , and the number of layers is denoted by .

II. BRIEF REVIEW OF THE TIME-DOMAIN LAFE-RR METHOD

The electric field inside a 3-D integrated circuit satisfies
the second-order vector wave equation

(1)

Fig. 1. Illustration of the LAFE-RR process. (a) Three-dimensional layered
system, (b) 2-D layered system, and (c) single-layer system.

subject to certain boundary conditions. In (1), are
relative permeability, free-space permeability, permittivity, and
conductivity, respectively; is the current source; is the com-
putational domain that encloses the circuit. A time-domain fi-
nite-element solution of (1) and its boundary condition results
in a system of ordinary differential equations [19]

(2)

in which , and are square matrices, and , and are
column vectors. Their elements are given by

(3)

where are the vector bases used to expand the unknown
electric field is an operator associated with the absorbing
boundary condition, and and denote volume and
surface integration, respectively.

When the problem size is large, it is difficult to solve matrix
equation (2). The time-domain LAFE-RR method [12], [13] was
developed to overcome this problem. In this method, the com-
putational domain is discretized into prism elements as shown
in Fig. 1(a). The prism elements extrude along the layer growth
direction, which can be the -direction, i.e., the stack-growth
direction, or the - and -direction. The unknowns are ordered
layer by layer. In each layer, the unknowns are divided into sur-
face and volume ones. As shown in Fig. 1(a), the unknowns
associated with the solid edges are surface unknowns; and the
unknowns associated with the dashed edges are volume un-
knowns. The 3-D layered system matrix is then analytically re-
duced to a 2-D layered one, as shown in Fig. 1(b). The 2-D lay-
ered system matrix is then analytically reduced to a single-layer
one, as shown in Fig. 1(c). The reduced single-layer matrix pre-
serves the same sparse pattern as that of a single-layer matrix in
the original system matrix, which enables an efficient computa-
tion. The method permits different layout structures in different
layers. It is applicable to both triangular prism and brick ele-
ment based discretization.

At each time step, once the surface unknowns in a single layer
are known, the surface unknowns and the volume unknowns
in other layers can be recovered. For example, the volume un-
knowns in layer , are recovered by solving the following
matrix equation:

(4)
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Fig. 2. Illustration of the mesh, ordering, and matrix pattern. (a) Mesh and
ordering and (b) matrix pattern.

where is the right-hand-side corresponding to the volume
unknowns in layer [12], which can be calculated from

(4')

in which superscript denotes the th time step, and is the
time step. Matrix is assembled from its elemental contri-
bution as the following:

(5)

in which is the thickness of layer is the permittivity in
layer and element is the area coordinate (also
known as the node basis function [20]), and is the support
of the triangular element . is sparse. However, its compu-
tation can be very expensive when its dimension is large. To
solve this problem, an algorithm of complexity is devel-
oped in this work.

III. RECOVERY ALGORITHM OF LINEAR COMPLEXITY

To recover the volume unknowns efficiently, is struc-
tured to be a block tridiagonal matrix through a proper ordering
of unknowns. To make the matrix even better structured, the
computational domain is discretized into brick elements. Since
most of the on-chip structures are Manhattan-type structures, the
geometry modeling capability would not be lost by using brick
elements. Assuming volume unknowns are assigned along the
direction. Fig. 2(a) depicts an – cross-sectional view of these
volume unknowns. Each volume unknown becomes a dot in this
view.

The cross section is meshed into columns along and
rows along . If the unknowns are ordered column by column
from let to right, and in each column, the unknowns are or-
dered row by row from bottom to top. A matrix having
a pattern shown in Fig. 2(b) will be generated. It is a block
tridiagonal matrix. Furthermore, each diagonal and off-diag-
onal block is a tridiagonal matrix. Moreover, the matrices

are linearly proportional to each other,
are linearly proportional to each

other, and are also linearly proportional to each other.

Fig. 3. (a) Bottom-up elimination procedure. (b) Top-down elimination proce-
dure.

This is because and are assembled from their ele-
mental contributions as

(6)

in which is the permittivity in segment (the region formed
between columns and ) and element , and
are the height, width, and thickness of the segment and ele-
ment , respectively. Since is the stack-growth direction, each
segment shares the same permittivity configuration, distribu-
tion, and . As a result, and change with only, and
also in a linear fashion. Hence, if is taken as the reference,

and can be obtained as follows:

(7)

Next, we propose a scheme to analytically reduce that
involves segments to a matrix that involves only a
single segment. This scheme is analogous to that developed
in [13], which reduces a 2-D layered system matrix to a
single-layer one. Assuming the segment to be reduced to is
, a top-down-bottom-up procedure is performed to eliminate

the other segments and project their contributions to segment
. For the bottom-up elimination, as shown in Fig. 3(a), the

finite-element submatrix in the last segment, i.e., the th
segment, is first formed. It is then eliminated with its contri-
bution projected to the th segment. Next, the modified

th segment is processed, and its contribution is projected
to the th segment. This procedure is continued until
the th segment is reached. From bottom to top, Fig. 3 lists the
submatrix in the th segment, the modified submatrix in
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TABLE I
ACCURACY COMPARISON

TABLE II
PERFORMANCE COMPARISON

the th segment, , and the modified submatrix in the
th segment. Mathematically, it can be represented as

(8)

The top-down elimination is depicted in Fig. 3(b). Mathemati-
cally, it can be written as

(9)

As a result, matrix is reduced to a matrix of a single seg-
ment (segment ) as

(10)

in which are the volume unknowns residing on column ,
and are the volume unknowns residing on column

. In (10), carries all the contribution from -segments
(the segments left to segment ) to segment , and matrix
carries the contribution from segments (the segments right
to segment ) to segment .

As shown in (7), all the and matrices are linearly
proportional to each other. Therefore, (8) and (9) do not involve
any computation. If is taken as the reference, then
and are simply scaled by a certain coefficient made
of , which can be calculated by using
(7)–(9).

The right-hand side of (10) is also obtained by a top-down-
bottom-up procedure from the original right-hand side of (4).

For example, can be obtained from a bottom-up recursive
procedure as

(11)

can be obtained from a top-down recursive procedure as

(12)

Equation (10) can be further analytically reduced to a matrix
equation involving a single column as

(13)

where

There is no need to compute matrix inverse and matrix-matrix
multiplication in (13) because and are linearly pro-
portional to each other. Matrix is hence again scaled
by a certain coefficient. Therefore, solving matrix (13) is equiv-
alent to solving

(14)

in which is a corresponding scaling of .
is a symmetric tridiagonal matrix. Its dimension is

. The inverse of a symmetric tridiagonal matrix belongs to
the class of semiseparable matrices. There exist two sequences
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[21] such that can be written
as

...
. . .

... (15)

Denoting as , the sequences
can be generated in opera-

tions as follows:

(16)

Because the number of stacks is fixed at each processing tech-
nology node, is a constant. Hence, the matrix inversion has
a constant cost in CPU time and memory (the storage of

). Furthermore, is much smaller
than . For example, a typical is 20. Therefore, the cost of
matrix inversion is negligible.

The remaining task is to reduce the complexity of computing
. As shown in (15), the inverse of is dense, which

consists of parameters. Apparently, one needs op-
erations to obtain . In fact, it can be obtained in linear
complexity, . This is because of the compact represen-
tation of in numbers containing in and ,
which leads to an efficient computation of in linear
complexity. Assuming to be
is evaluated as follows:

(17)

The underlying terms are those that do not need to be computed,
as they can be reused from the previous step if one starts from
the last row. As a result, for any row , there
is only one multiplication that needs to be calculated to-
gether with one summation with the underlying term and one

multiplication with . The same is true for the lower triangular
part. Hence, the cost of scales as , with the con-
stant multiplier in front of equal to 7.

Once the unknowns on a single column are solved, the volume
unknowns on other columns can be obtained recursively as fol-
lows:

(18)

Once again, there is no need to compute as the two
matrices are linearly proportional to each other. Since is

scaled by a coefficient as can be seen from (7)–(9). The
inverse calculated in (15) can be reused here. Applying the in-
verse of to any vector can be performed in linear com-
plexity as done in (17). Hence, the volume unknowns

in (18) are obtained in linear com-
plexity. As a result, the cost of recovering all the volume un-
knowns, i.e., solving (4), scales with the number of unknowns
linearly.

IV. NUMERICAL RESULTS AND EXPERIMENTAL VALIDATION

To demonstrate the accuracy of the proposed algorithm,
a test-chip interconnect structure [22] was simulated. The
structure was fabricated using conventional silicon processing
technology. It involves three metal layers, and 13 inhomoge-
neous dielectric stacks. It is 2000 m long. The structure was
discretized into brick elements, resulting in 700 000 volume
unknowns in a single layer. The solution of the volume un-
knowns recovered from the proposed algorithm was compared
with those recovered from the original scheme [12], [13] that
was based on a multifrontal method [17]. Table I lists the value
of some entries arbitrarily selected from the unknown vector.
Clearly, the accuracy of the proposed algorithm is validated.

In Table II, the performance of the proposed algorithm is
compared against that of the original scheme. As shown in
Table II, the CPU time and memory cost for the matrix fac-
torization is negligible in the proposed algorithm. The matrix
solution time, i.e., the CPU cost of obtaining parameters, is
24 times faster.

In Fig. 4, the time domain waveforms of the test-chip in-
terconnect are plotted. The current source is a derivative of a
Gaussian pulse, as shown in Fig. 4(a). It is launched at the near
end of the center wire of the interconnect structure. Fig. 4(b)
and (c) plots the voltages sampled at the near- and far-end of
this wire, respectively. An inductance effect can be clearly ob-
served.

A Fourier transform is then performed, and the S-parameters
are extracted from the time-domain waveforms. As can be seen
from Fig. 5, the S-parameters simulated by the proposed algo-
rithm are in excellent agreement with those generated by the
original scheme. In addition, they match well with the measured
data.
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Fig. 4. Time-domain waveforms of a test-chip interconnect. (a) Current source
launched at the near end. (b) Voltage sampled at the near end. (c) Voltage sam-
pled at the far end.

V. CONCLUSION

In this paper, an efficient algorithm was developed to recover
the volume unknowns in the time-domain LAFE-RR method.
This algorithm constitutes a direct solution of the matrix formed
by volume unknowns. It possesses the optimal computational
complexity one can hope for to solve the volume-unknown-

Fig. 5. S-parameters of a test-chip interconnect simulated by the proposed al-
gorithm in comparison with the measured data and the S-parameters generated
by the original scheme.

based matrix. The cost of matrix inversion is a constant: ,
which is negligible because is a constant that is much smaller
than . The cost of matrix solution scales linearly with the
number of unknowns in both CPU time and memory consump-
tion. In addition, the constant multiplier in front of the number of
unknowns is small (less than 10). Numerical and experimental
results have demonstrated its accuracy and efficiency.
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