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Abstract— In this work, we find that the matrix representing
the curl–curl operator in a partial differential equation solver
of Maxwell’s equations can be analytically decomposed into a
gradient divergence operator and a Laplacian, both of which
can be constructed from the mesh information without any
need for computation. The curl–curl operator can hence be
replaced by the Laplacian to find the divergence-free component
of the field solution. The Laplacian is positive definite and well-
conditioned. As a result, the convergence of an iterative solution
of Maxwell’s equations can be guaranteed, and also significantly
accelerated. Based on the finding, we represent the divergence-
free component of the unknown field solution by deducting its
curl-free component. The curl-free component resides in the
nullspace of the curl–curl operator, which is also analytically
known from the mesh information no matter it is a regular grid
or an unstructured mesh. After the divergence-free component
is rapidly solved from a Laplacian counterpart of the original
system matrix, the curl-free component can also be solved from
a Laplacian matrix, and hence having fast and guaranteed con-
vergence. The total computational cost of the proposed method is
simply a small number of sparse matrix-vector multiplications.
The proposed method has been successfully applied to solve ill-
conditioned on-chip, packaging, and antenna radiation problems
at both low and high frequencies, involving both inhomogeneous
dielectrics and lossy conductors. Numerical experiments have
demonstrated its fast and guaranteed convergence, as well as
trivial computational cost independent of problem size.

Index Terms— Fast convergence, fast method, finite-difference
method, finite-element method, frequency domain, Helmholtz
decomposition, iterative solver, partial differential equation
method.

I. INTRODUCTION

THE system matrix resulting from a partial differential
equation (PDE) based solution of Maxwell’s equations

in frequency domain is indefinite, involving both negative and
positive eigenvalues. When loss especially conductor loss is
involved, the system matrix is complex valued and unbalanced,
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which is even more difficult for an iterative solution to
converge. It has also been found that iterative solutions are
difficult to converge at low frequencies, in the presence of
multiscaled geometries, and when problem size is large.

Existing techniques for expediting iterative PDE solutions
are mainly based on finding a good preconditioner for solving
the underlying system of equations [1]–[5]. To give a few
examples, in [2], a preconditioner is developed from a good
approximation of the original problem to solve the finite
element-boundary integral system of equations; in [3], Jacob,
symmetric successive over-relaxation (SSOR), and sparse
approximate inverse (SAI) preconditioners are explored to
accelerate generalized minimal residual method (GMRES)
in an implicit time-domain finite-difference method; in [4],
the SSOR preconditioner is used with a conjugate gradi-
ent (CG) iterative solver to expedite a finite-element method;
and in [5], a preconditioner is constructed from a simpli-
fied version of the original finite-element system matrix to
analyze layered structures. Among these methods, diagonal,
block diagonal, Jacob, SSOR, and similar preconditioners are
computationally efficient to construct. But their performance
is problem dependent, and their convergence is not guar-
anteed when solving an ill-conditioned full-wave system of
equations. Approximate inverse or incomplete factorization-
based preconditioners are more robust and can exhibit a faster
convergence. However, they are computationally expensive.
Other preconditioners suffer from a similar performance and
cost trade-off. In this work, instead of devising a good pre-
conditioner, we propose and develop a different method to
expedite the convergence of an iterative PDE-based solution
of Maxwell’s equations in frequency domain.

Our method is based on the following important finding.
The curl–curl operator (stiffness matrix) resulting from the dis-
cretization of Maxwell’s equations can be rigorously decom-
posed into a gradient divergence operator and a Laplacian, both
of which can be constructed from the mesh information with-
out any need for computation. Meanwhile, the field solution
can be decomposed into a gradient field and a divergence-
free component. And the column space of the gradient field
can be analytically found from the mesh information. The
gradient divergence operator of the curl–curl operator vanishes
when operating on the divergence-free component of the field
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solution, and hence the singular curl–curl operator can be
replaced by the Laplacian without any approximation. This
Laplace operator shares the same nonzero eigenvalues and
eigenvectors of the curl–curl operator. Since the Laplacian is
positive definite and well-conditioned, the resultant iterative
solution has guaranteed convergence. Iterative methods such
as a multigrid method [1], [6] have been shown to converge
the solution of a Laplacian matrix in a constant and small
number of steps irrespective of matrix size. Based on the
aforementioned idea, we develop a fast iterative solution to
solve Maxwell’s equations in frequency domain. We have also
successfully applied it to solve a wide range of problems
such as highly ill-conditioned on-chip integrated circuits where
static- and full-wave components of the field solution coexist,
and fields penetrate into lossy conductors, and integrated
packaging and antenna radiation problems whose electrical
sizes are much larger. The high-performance and trivial cost
of the proposed method have been demonstrated.

This article is a significant expansion of our two-page
conference paper [7]. In this article, we complete the develop-
ment of the algorithm and the theory behind the algorithm,
and also present them in detail. In addition, we conduct
extensive numerical experiments to validate its accuracy and
efficiency from structures in the deep sub-wavelength regime,
to structures that are multiscaled where sub-wavelength and
multiple-wavelength features coexist, to structures without
sub-wavelength features and dominated by high-frequency
field solutions. The remainder of this article is organized as
follows. In Section II, the problem under study is introduced.
In Section III, the essential idea of the proposed work is elab-
orated, where the discretized curl–curl operator is analytically
decomposed into a Laplacian matrix and a gradient divergence
matrix without computation. We also show the discretized
curl–curl operator can be replaced by the Laplacian matrix
rigorously when operating on the divergence-free component
of the field solution, and explain how to use this fact to
expedite an iterative solution. In Section IV, a fast method
is developed based on the proposed idea to accelerate the
convergence of an iterative PDE-based solution of Maxwell’s
equations in frequency domain. In Section V, we apply the
proposed method to solve a wide range of electromagnetic
problems from on-chip circuits to antenna radiation. Numer-
ical experiments have demonstrated the accuracy, efficiency,
fast, and guaranteed convergence of the proposed method.
In Section VI, we draw our conclusions.

II. PROBLEM STATEMENT

A frequency-domain PDE-based solution of Maxwell’s
equations, in general, results in the following linear system
of equations: (−ω2Dε + jωDσ + S

)
e = − jωJ (1)

where ω is the angular frequency, e denotes a vector of
electric field unknowns, Dε matrix is associated with per-
mittivity, Dσ matrix is with conductivity, and J denotes a
current source vector. Regardless of the PDE method used

to discretize Maxwell’s equations, be it a finite-difference
method (FDM), a finite-element method (FEM), a finite-
volume method (FVM), or others, the final numerical system
all can be cast in the form shown in (1). All matrices are
sparse. In the FDM, the Dε and Dσ are also diagonal.

The S in (1) represents a discretized ∇ × μ−1∇× operator.
Its smallest eigenvalue is zero since when S operates on a
gradient field, the result is zero. Its largest one is inversely
proportional to the square of the smallest mesh size, since the
matrix entry is obtained by taking the spatial derivatives twice.
The ratio of ω2Dε to S is proportional to the square of the
electrical size of the geometrical features [8]. This renders an
iterative solution of (1) difficult to converge, especially when
the frequency is low, electrical size is small, or the problem
is multiscaled in geometry resulting in a high condition
number of the numerical system. The presence of dielectric
or conductor loss, characterized by the Dσ -term, makes an
iterative solution of (1) even more difficult to converge. The
iteration number, in general, grows with problem size as well.
Larger problems typically require more iterations to achieve
convergence. In next section, we present the essential idea of
this work to address the aforementioned challenges.

III. PROPOSED IDEA

In view of the following vector identity:
∇ × (∇ × A) = ∇(∇ · A) − ∇2A (2)

we find that S can be analytically decomposed into

S = −V0V
T
0a/μ + L (3)

where V0 represents a discretized form of the gradient oper-
ation, V

T
0a denotes a discretized form of the divergence oper-

ation, −V0V
T
0a denotes a discretized form of ∇(∇·), and L

corresponds to the discretized form of Laplacian −∇2 divided
by μ. If permeability is inhomogeneous, (3) can be modified
to suit the scenario.

The above description might be abstract. To explain it more
clearly, consider a scalar field a(r), which is a function of 3-D
coordinate r. Numerically, this scalar field is represented by a
column vector after discretization, with each entry representing
the a at a space point. Let this column vector be denoted
by a. It can be written as a = [a(r1), a(r2), . . . , a(rn)]T .
Then, V0a represents discretized ∇a, thus a gradient operation.
So mathematically, V0 is a matrix, but when it is multiplied
by a column vector, the resultant matrix-vector multiplication
means to take the gradient of the scalar field represented by
the column vector. The V0 has multiple rows also. The row
index denotes the point where the gradient field is evaluated.
Similarly, V

T
0a operating on (multiplied by) a column vector

means to take the divergence of a vector field represented by
the column vector. Each entry of the column vector represents
the vector field at a certain point along a certain direction after
discretization. So when we use matrix S to multiply a column
vector, it means taking a ∇ × (∇×)/μ operation (certainly in
a discretized manner) on the vector field represented by that
column vector. In all, (3) is a discretized manifestation of (2).
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The V0 and V0a in (3) can be found from the right and left
nullspace of S, respectively, since they satisfy

S V0 = 0 (4)

and

V
T
0aS = 0. (5)

This is because V0 denotes a gradient operation, S is a
double curl operation, and the curl of a gradient field is known
to be zero. Similarly, V

T
0a represents a divergence operation,

and hence when it operates on a curl, the resultant should be
zero. The property of (4) and (5) is what we use to analyt-
ically figure out V0 and V0a from mesh information without
numerical computation. In addition, to clarify notations used
in this work, the subscript 0 in V0 and V0a denotes nullspace,
V denotes a group of column vectors, subscript a arises from
the fact that the left nullspace is related to the averaged length
in a nonuniform grid.

If S is symmetric

V0a = V0 (6)

otherwise

V0a �= V0. (7)

A symmetrical S is observed in an FEM, and an FDM in
a uniform grid. In a nonuniform grid, S is not symmetrical in
an FDM-based solution of Maxwell’s equations, and hence its
left and right nullspaces are different.

The V0 can be analytically generated from the mesh infor-
mation without any need for computation. This analytical
method is given in detail in our previous work [9], [10]. Here,
for the completeness of this work, we provide a brief summary
of the method. The column dimension of V0 is the number of
free nodes minus 1 in a mesh, no matter the mesh is a grid
or an unstructured tetrahedron mesh. The i th column vector
of V0 corresponds to the i th node in a mesh, which can be
generated as follows:

1) find all edges connected to the node;
2) if the edge basis enters (leaves) the node, (1/ li)

(−(1/ li)) appears on the row of V0,i corresponding to
this edge basis, where li is the edge length.

The nodes residing on a perfect conductor are grouped as
one node whose nullspace vector is the sum of all nullspace
vectors of the nodes on the perfect conductor. The aforemen-
tioned approach for finding V0 is the same for the FDM and
the FEM. In a symmetric FEM formulation, the left nullspace
V0a is the same as the right one, V0. However, in the FDM,
when the grid is not uniform, V0a is different from V0. But
it can also be found analytically. We simply replace li in the
above by an average length, the detail of which can be seen
from [10, Sect. IV].

Based on (3), we further find that the S’s nonzero eigen-
values and their corresponding eigenvectors are also L’s
eigenvalues and eigenvectors. To see this point clearly, let Vh

be the union of S’s eigenvectors corresponding to nonzero
eigenvalues whose diagonal matrix is denoted by �h . Clearly,
they satisfy

S Vh = Vh�h . (8)

Therefore

V
T
0aS Vh = V

T
0aVh�h . (9)

Because of (5), the left-hand side of (9) is zero. Hence,
we obtain

V
T
0aVh = 0. (10)

Since the left in the above represents a discretized ∇ · Vh ,
we can see that each column vector of Vh represents a
divergence-free field. Multiplying both sides of (3) by Vh , and
utilizing (10), we obtain

S Vh = L Vh . (11)

This proves that the nonnullspace eigenvectors and eigenval-
ues of S are also those of L. This further means when operating
on S’s nonnullspace eigenmodes, i.e., full-wave modes, we can
replace S by L! Since these modes satisfy (10), they are also
divergence-free modes. On the other hand, V0 is curl-free
because they satisfy (4).

From (3), the difference between L and S can also be seen.
In addition to Vh shared in common with S, L has a subspace
of V0, but LV0 �= 0 as can be seen from (3). Instead, LV0 =
V0V

T
0aV0/μ, thus V0 is not L’s nullspace. The L resides in

the space of Vh and V0, which is full-rank.
Based on the aforementioned findings, the essential idea

of this work to accelerate convergence is to replace the
original singular matrix S by its Laplacian counterpart L
when operating on the divergence-free component of the field
solution. By doing so, we can utilize the good property of
L, which is positive definite and well-conditioned, to develop
a fast iterative solution of guaranteed convergence to solve
Maxwell’s equations in frequency domain.

As far as the generation of L is concerned, it does not
involve any computational cost. Since S is known, as well as
V0 and V0a , we can utilize them to generate L as the following:

L = S + V0V
T
0a/μ. (12)

In a finite-difference grid, the L can also be readily con-
structed from scratch without using S.

IV. PROPOSED METHOD TO ACCELERATE

CONVERGENCE OF ITERATIVE SOLUTIONS

To take advantage of the property of (11), we separate the
V0-component of e from its Vh component to solve. We hence
expand e as

e = V0y0 + eh . (13)

The above is equivalent to separating the curl-free compo-
nent of e from its divergence-free component, since V0y0 is
in the right nullspace of S, and hence being curl-free; whereas
the eh is in the column space of Vh , and hence divergence-free.

In Fig. 1, we plot a flowchart to illustrate the overall
procedure of the proposed method. The original full-wave
system is divided into a zero-mode subsystem, whose solution
is the curl-free component; and a high-order mode subsystem,
whose solution is the divergence-free component. These two
subsystems are both made as Laplacian matrices, and hence
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Fig. 1. Overall procedure of the proposed method.

can be solved fast iteratively with guaranteed convergence.
After the two components are obtained, they are added up to
obtain the final full solution.

The proposed method works well because we separate the
nullspace from the high-frequency modes (whose curl is not
zero) to solve, and further transform the solution of each
to a Laplacian to solve. Since Laplacian has a guaranteed
fast convergence, the proposed iteration solution is also fast.
In contrast, in a conventional solution, the two are mixed
together to solve, and one has to deal with a large eigen-
value spectrum from zero to largest eigenvalue to solve the
original numerical system. In the scenario where only the
curl-free component is dominant, or only the divergence-free
component is dominant, only one branch of the flowchart
shown in Fig. 1 is needed. In this case, the conventional
solution does not suffer from the difficulty of mixing the
two to solve, but can still suffer from slow convergence.
In contrast, the proposed method expedites convergence since
the singular S is replaced by a positive-definite Laplacian L.
Next, we elaborate the details of the proposed method.

A. Combined System of Equations With S Replaced by L

Substituting (13) into (1), and testing the resultant by
[V0a I]T , we transform (1) to the following to solve y0 and eh[

V
T
0a

(−ω2Dε + jωDσ

)
V0 V

T
0a

(−ω2Dε + jωDσ

)(−ω2Dε + jωDσ

)
V0

(−ω2Dε + jωDσ + S
)
][

y0

eh

]

=
[

V
T
0a(− jωJ)
− jωJ

]
. (14)

The S vanishes in the first row of the above equation because
of (5); and it vanishes in the first term of the second row
because of (4).

Utilizing the property of (11), we can replace the (−ω2Dε +
jωDσ + S) in (14) by (−ω2Dε + jωDσ + L) since that matrix
operates on eh . Hence, (14) can be rigorously transformed to
the following to solve:[

V
T
0a

(−ω2Dε + jωDσ

)
V0 V

T
0a

(−ω2Dε + jωDσ

)(−ω2Dε + jωDσ

)
V0

(−ω2Dε + jωDσ + L
) ][

y0

eh

]

=
[

V
T
0a(− jωJ)
− jωJ

]
. (15)

Denoting the above in short by[
A00 A0h

Ah0 Ahh

][
y0

eh

]
=

[
V

T
0a(− jωJ)
− jωJ

]
(16)

where

A00 = V
T
0aDV0, A0h = V

T
0aD (17)

Ah0 = DV0, Ahh = D + L (18)

with

D = (−ω2Dε + jωDσ

)
. (19)

Here, we use subscript h to denote the part corresponding
to Vh , and 0 for the part corresponding to V0. The matrix
Ahh now has good properties since the original ill-conditioned
matrix S is changed to L, which is a Laplacian matrix. To fully
take advantage of the good property of Ahh , we solve (16) in
the following way.

B. Solution of Divergence-Free Component: eh

First, we compute eh from the following:
Ãhheh = (− jωJ) − Ah0A

−1
00 V

T
0a(− jωJ) (20)

where the Ãhh is the Schur complement of Ahh , that is,

Ãhh = Ahh − Ah0A
−1
00 A0h . (21)

This matrix appears to be complicated, and difficult to solve.
In fact, it corresponds to the Laplacian counterpart of the
original system matrix shown in (1) in an inhomogeneous
material, and its iterative solution has a fast convergence.
To see this point clearly, we can write the Ãhh in full, obtaining

Ãhh = (
D + L

) − D V0

(
V

T
0aDV0

)−1
V

T
0aD (22)

which can be further rewritten in short as

Ãhh = Dh + L (23)

in which

Dh = D − D V0

(
V

T
0aDV0

)−1
V

T
0aD. (24)

The Dh is nothing but the component of D in Vh space.
To prove, we can expand the matrix D in the space of DV0

and Vh as follows:
D = DV0X0 + VhXh (25)

where X0 and Xh are the coefficient matrices to be found.
Multiplying V

T
0a to both sides of the above equation, using

the property of V
T
0aVh = 0, we obtain

V
T
0aD = V

T
0aDV0X0 (26)

and hence

X0 =
(

V
T
0aDV0

)−1
V

T
0aD. (27)

Substituting the above into (25) and moving the X0-term to
the left-hand side, we have

VhXh = D − D V0

(
V

T
0aDV0

)−1
V

T
0aD = Dh . (28)
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Thus, (24) is nothing but the component of D in Vh space.
Following a similar proof, we can see the right-hand side of
(20) is the original right-hand side (− jωJ)’s component in Vh

space. We hence denote it by

bh = (− jωJ) − Ah0A
−1
00 V

T
0a(− jωJ). (29)

From the above, Ãhh is the component of the original system
matrix

A = −ω2Dε + jωDσ + S = D + S (30)

in Vh space, where S is reduced to Laplacian matrix L as well.
Highlighting this fact, we denote (22) by

AL = Ãhh = Dh + L. (31)

We find when both curl-free and divergence-free compo-
nents are important, the iterative solution of AL converges
fast in a small number of steps. In contrast, the original matrix
shown in (1) is difficult to converge.

It is worth mentioning that the Schur complement Ãhh never
needs to be explicitly formed in an iterative solution. What
needs to be computed is Ãhh multiplying a vector at each step
of an iterative solution. As can be seen from (21), multiplying
Ãhh by a vector is simply to perform a few sparse matrix
multiplications, and also solving A00 for a right-hand side
vector. The former has a linear complexity, while the latter is
the solution of a Laplacian system, and hence can be obtained
fast. The fast solution of A00 is given in the next section.

The aforementioned algorithm can further be simplified
for electrically small problems like on-chip-integrated cir-
cuits, where the coupling is weak between the V0- and
Vh-component since S dominates. In this case, the Schur
complement can be accurately approximated as Ahh , hence
we have

AL = Ãhh ≈ Ahh = D + L. (32)

Since Ahh is the sum of a Laplacian and D matrix, and the
Laplacian is dominant in electrically small problems, iterative
solvers such as GMRES or multigrid can be used to solve it
fast also.

For problems where only the divergence-free component is
important, we only need to solve (20) because the resultant
eh makes a good total solution of (1). This can happen when
electrical size of the problem under study is relatively large
since the curl of electric field is not zero any more, and/or
under certain excitations where only divergence-free modes
are excited, or under other conditions. In this case, since
V0-component is negligible, the Schur complement can be
replaced by the Ahh itself, hence (20) is simplified to the
following to solve: (

D + L
)
eh = bh (33)

where bh is the right-hand side of (20). Since the nullspace of
S is not important anymore, it appears that (33) has a similar
convergence performance as (1), since both rely on the Vh to
converge. However, because L is a Laplacian and its solution

is computationally trivial, it can be used as the preconditioner
to solve (33) fast, i.e., solving the following:(

L
−1

D + I
)

eh = L
−1

bh . (34)

In contrast, when solving the original (1), it is not feasible
to use S as the preconditioner to capture Vh modes fast since
S is singular.

C. Solution of Curl-Free Component: V0y0

After obtaining eh , we substitute it into the first equation
of (16), and solve y0 from

A00y0 = V
T
0a(− jωJ) − A0heh . (35)

When there are no lossy conductors, A00 is a Laplacian
matrix in dielectric materials, which can be solved fast.
When there are lossy conductors, to solve A00 efficiently,
we transform it to the solutions of two Laplacians as follows.
We expand the curl-free component V0y0 into

V0y0 = V0d y0d + V0cy0c (36)

where V0d are the V0 at dielectric nodes, and V0c are at the
conductor nodes, with V0da and V0ca being their left counter-
parts. In an FEM, the latter are the same as the former, whereas
in an FDM, they are different. The analytical generation of
V0da , V0ca can be found in [10]. Write V0 = [V0d , V0c] and
V0a = [V0da, V0ca], A00 can be rewritten as

A00

=
[

V
T
0da

V
T
0ca

](−ω2Dε + jωDσ

)[
V0d V0c

]
=

[
V

T
0da

(−ω2Dε

)
V0d V

T
0da

(−ω2Dε

)
V0c

V
T
0ca

(−ω2Dε

)
V0d V

T
0ca

(−ω2Dε + jωDσ

)
V0c

]
. (37)

Therefore, (35) can be solved as[
V

T
0da

(−ω2Dε

)
V0d V

T
0da

(−ω2Dε

)
V0c

V
T
0ca

(−ω2Dε

)
V0d V

T
0ca

(−ω2Dε + jωDσ

)
V0c

][
y0d

y0c

]
=

[
b0d

b0c

]
(38)

where V0d , V0da , V0c, and V0ca are all normalized, where each
column vector’s L2 norm is 1, and

b0d = V
T
0da(− jωJ) − V

T
0daDeh (39)

b0c = V
T
0ca(− jωJ) − V

T
0caDeh . (40)

Equation (38) can be written in short as[
Mdd Mdc

Mcd Mcc

][
y0d

y0c

]
=

[
b0d

b0c

]
(41)

in which

Mdd = V
T
0da

(−ω2Dε

)
V0d

Mdc = V
T
0da

(−ω2Dε

)
V0c

Mcd = V
T
0ca

(−ω2Dε

)
V0d

Mcc = V
T
0ca

(−ω2Dε + jωDσ

)
V0c. (42)
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Notice that Mcc is inside conductors, and hence the dis-
placement current therein is much smaller than the conduction
current, thus

Mcc ≈ V
T
0ca

(
jωDσ

)
V0c. (43)

To solve (41), first, we solve(
Mcc − McdM

−1
dd Mdc

)
y0c = b0c − McdM

−1
dd b0d . (44)

Because ‖Mcc‖ � ‖McdM
−1
dd Mdc‖ for good conductors,

(44) can be accurately approximated as

Mccy0c = b0c − Mcd M
−1
dd b0d . (45)

After y0c is obtained, y0d can be computed from

Mdd y0d = b0d − Mdcy0c. (46)

Notice that the two matrices to be solved, Mdd and Mcc,
are nothing but discretized ∇ · ε∇ and ∇ · σ∇, and hence
Laplacian matrices. Therefore, the above (45) and (46) can
be rapidly solved by an iterative method such as a multigrid
method. The aforementioned solution of A00 is also used in
the iterative solution of (20). After all of the aforementioned
computation, the final solution is obtained by adding the curl-
free component with the divergence-free one as follows:

e = V0d y0d + V0cy0c + eh . (47)

D. Complexity Analysis

The computational complexity of the proposed algorithm is
O(N) in both time and memory, i.e., linearly scaling with the
number of unknowns N . This can be analyzed as follows.

First, we solve (20) to find the divergence-free component.
Because the system has been transformed to a Laplacian
counterpart, iterative solvers such as GMRES and multigrid
can converge the solution in a very small number of steps.
At each step of such an iterative solver, the computational
cost is to multiply Ãhh by a vector (say ν). Based on the
expression of Ãhh shown in (21), this can be carried out by
first multiplying A0h by ν, which has a linear complexity
since A0h is sparse. Let the resultant vector be x1. Then we
compute (A00)

−1x1. This is equivalent to solve (A00)x2 = x1.
The x2 can be found by the fast solution of A00 described
in Section IV-C, which has a linear complexity since it is
the solution of two Laplace matrices. After x2 is computed,
we multiply Ah0 with it, which again has a linear cost since
Ah0 is sparse. Let the resultant vector be x3. We then do a
sparse matrix vector multiplication of Ahh with ν, and subtract
x3 from the resultant vector. The end result is Ãhhν. Such a
matrix-vector multiplication needs to be performed for k steps,
where k is the number of iterations. Since k is a small constant
here due to the proposed Laplacian treatment, the total cost of
finding eh is linear.

As for the computational cost of finding the curl-free
component, as shown in Section IV-C, we only need to solve
(45) and (46). Both matrices are Laplacian, and hence they
can be converged in a small and constant number of iterations.
As a result, the time cost of finding the curl-free component
is also linear.

Regarding the memory, the main memory cost is incurred
during the iterative solution, which is of kO(N), where k
is the number of iterations. Since the iteration number k is
made small, the memory usage of the proposed method is
modest, and also scales linearly with N . The aforementioned
complexity analysis will become more clear in the section of
Numerical Results, where we compare the time and memory
consumption of the proposed method with conventional cost.

E. Remarks

Before finishing this section, we provide another under-
standing of the proposed work in the context of Helmholtz
Decomposition. For example, in [11]–[13], loop-tree bases
are introduced in integral equation solvers to decompose an
unknown current into a divergence-free component and a
nondivergence-free one. In [14]–[16], tree–cotree bases are
used in FEM solvers to decompose an unknown field into a
curl-free component and a noncurl-free one. In both methods,
an inexact Helmholtz decomposition is performed. In the for-
mer, the loop basis is divergence-free, but the tree basis is not
curl-free; in the latter, the tree basis is curl-free, but the cotree
basis is not divergence-free. In comparison, in the proposed
method, we have an exact Helmholtz decomposition, where the
unknown field is split into a curl-free and a divergence-free
component. Moreover, we change the system matrix operating
on the divergence-free component to its Laplacian, which is
exact since the curl–curl operator is naturally reduced to a
Laplacian when operating on a divergence-free field. Such
a change of the original system matrix is further performed
without any computational cost in the proposed method. Mean-
while, the resultant Laplacian-based system has a guaranteed
fast convergence.

In addition, existing loop-tree and tree-cotree-based meth-
ods are accurate for use at low frequencies, but do not perform
equally well at high frequencies. The reason can be understood
as follows. In a tree-cotree-based method, after some edges are
identified as tree edges, their original vector edge bases are
replaced by gradient field bases, while the rest of the edges
keep their original vector bases. This would yield inaccuracy at
high frequencies, since the field solution at tree edges should
not be just a gradient field. Different from tree-cotree splitting,
in the proposed method, we keep the original vector edge
bases as they are. Instead of decomposing discretized edges
or edge bases into two sets, we decompose the solution space
governing the field solution into two subspaces. One is the
nullspace of the curl–curl operator, and the other is orthogonal
to it. Hence, each edge in the computational domain, i.e., each
unknown field has both a gradient field component, and a
divergence-free one. As a result, the proposed scheme is
equally effective at low and high frequencies. In addition, it is
free of low-frequency breakdown.

V. NUMERICAL RESULTS

In this section, we simulate a variety of problems from
on-chip circuits to antenna radiation problems to validate the
proposed method, and examine its performance. The FDM
is used to perform these simulations, but the formulations
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Fig. 2. Simulation of a test-chip interconnect. (a) |S11|. (b) |S12|.

Fig. 3. Convergence comparison between solving A and solving AL in
simulating the test-chip interconnect.

described in previous section are equally applicable to acceler-
ating the convergence of the FEM and other PDE solvers. The
computer used has 256 GB memory, and an Intel(R) Xeon(R)
CPU E5-2660 v3 running at 2.60 GHz.

A. Test-Chip Interconnect

The first example is a test-chip interconnect, which is the
same as that shown in [10, Fig. 4]. The conductors have a
conductivity of 5.8 × 107 S/m. The dimensions along the x ,
y and z-direction are 300, 100, and 3.19 μm respectively.

Fig. 4. Simulated Z-parameters of a NAND gate. (a) Z11 magnitude. (b) Z11
phase.

Fig. 5. Convergence comparison between solving A and solving AL for a
NAND structure.

We evaluate ((‖LVh − SVh‖)/(‖SVh‖)), and find it to be
1.3373 × 10−11, thus verifying our finding. The S-parameters
extracted from the proposed method are compared with those
from a brute-force solution of (1) in Fig. 2. They are shown
to agree well with each other. In this example, we employ
GMRES to solve (32), which takes only 34 steps to reach a
relative residual of 0.0087 at frequency 10 GHz. In contrast,
if we solve (1) by GMRES directly, after 4943 steps, the con-
vergence has not been achieved. Fig. 3 shows the relative
residual vs. the iteration number of the proposed method that
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Fig. 6. Convergence comparison between solving A and solving AL for a
package structure.

solves AL shown in (32), as compared to conventional one
that solves A shown in (1). As we can see, solving AL has a
much more rapid convergence.

After the divergence-free component eh is rapidly solved
from (20), we solve (45) and (46) to find the curl-free
component. In this step, it only takes a multigrid solver about
4 to 8 steps to reach a relative residual of 10−5 when solving
Mdd and Mcc, since both are Laplacian. The efficiency of the
proposed method can also be seen from the condition number.
For example, at 1 GHz, the condition number of the original
matrix from (1) is 2.15 × 1011. In contrast, the condition
numbers of Ãhh , Mdd and Mcc are 6 × 106, 1.5 × 103 and
5.3 × 106, respectively, which are much smaller. A well-
conditioned matrix may not converge in a small number of
iterations. However, the three matrices to be solved in the
proposed method are all made Laplacian, and hence they can
be converged fast in a small number of iterations.

The elapsed time for the conventional solver to solve
this example is 173.49 s and the peak memory usage is
355.796 MB. In contrast, the entire CPU time of the pro-
posed method is only 0.22 s including both divergence-
and curl-free solutions, and the peak memory usage is
20.47 MB. This verifies the efficiency of the proposed
method.

B. NAND Gate

The second example is a NAND gate, the structure of
which is shown in [10]. It has 17 layers. We discretize the
structure with a nonuniform grid yielding 690 142 unknowns.
The extracted Z-parameters are shown to agree very well
with those from the brute-force solution of (1) in Fig. 4.
The AL shown in (32) is solved in this example, for which
GMRES takes 94 steps to reach a relative residual of 0.0098 at
10 GHz. The relationship between the relative residual and
the iteration number for solving A and that for solving AL

is shown in Fig. 5, from which it can be seen that solv-
ing AL is much more efficient. The solution of Mdd and
Mcc takes at most 43 steps to achieve a relative residual
of 10−5.

The total CPU time of the proposed method is 35.89 s
and the peak memory usage is 1.88 GB. If we solve the
original matrix equation using a conventional method, it takes

2000 steps to reach a relative residual of 0.09499 without
converging, costing 8243.25 s in CPU time and 22.62 GB
peak memory.

C. A Package Interconnect

The third example is a package interconnect, the structure
of which is shown in [9]. It contains three layers. The bottom
conductor is a ground plane of copper conductivity. There
are two ground-signal-ground launchers at the two ends of
the interconnect line. The length of the line is 14.854 mm.
The S-parameters are extracted at the far and near ends
of the interconnect. Due to a larger electrical size of this
problem, we apply GMRES to solve (31) directly instead of
the approximated (32) used in previous two on-chip examples.
At 10 GHz, it only takes the proposed method 43 steps to
obtain a relative residual of 0.000999, while a conventional
solution costs many more steps, as can be seen from the
convergence comparison shown in Fig. 6. We compare the
results from the proposed method and the FDM in Fig. 7.
Excellent agreement is observed. The solution of Mdd and
Mcc takes at most nine steps to achieve a relative residual
of 10−5 in the proposed method. The total CPU time and
peak memory usage of the proposed method are 4.24 s,
and 27.98 MB, respectively, whereas the CPU time of the
conventional method is 46.41 s and peak memory usage is
219.6 MB.

D. Cavity-Backed Microstrip Patch Antenna

The fourth example is a cavity-backed path antenna example
shown in [17]. The patch size is W = 3.4 cm, L = 5
cm. There is a 50-� load at the point xL = −2.2 cm and
yL = −1.5 cm. The current is injected at the x f = 1.22
cm and y f = 0.85 cm point. The antenna patch is modeled
with a finite conductivity of 5.8 × 107 S/m. We extract the
Z-parameters and compare them with those obtained from the
FDM. They show good agreement in Fig. 8. We also record
the iteration number the proposed method takes to solve (31).
At 1 GHz, only 38 steps are taken to reach a relative residual
of 0.0005434, whereas the original system takes many more
steps to converge as can be seen from Fig. 9. The conven-
tional method performs better in this example than previous
examples because this example is less ill-conditioned. Solving
Mdd and Mcc takes at most seven steps to reach a relative
residual of 10−5. The total CPU time taken by the proposed
method is 2.04 s and the memory usage is 23.56 MB, whereas
the conventional method costs a CPU time of 12.72 s and
125.23 MB memory.

E. Large-Scale IBM Plasma Package Structure

In this subsection, we simulate a large-scale IBM plasma
package structure shown in [18]. We use a nonuniform grid to
discretize the structure, resulting in 15 407 710 unknowns. The
S-parameters are extracted at two selected ports and compared
with the reference results generated from [18]. As can be
seen in Fig. 10, good agreement with reference solution is
observed. The performance of the proposed iterative solver
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Fig. 7. Simulation of a package interconnect structure. (a) |S11|. (b) S11’s phase. (c) |S12|. (d) S12’s phase.

Fig. 8. Simulation of a cavity-backed patch antenna. (a) Input resistance (Ohms). (b) Input reactance (Ohms).

is also checked. At 10 GHz, solving AL takes 274 steps to
achieve a relative residual of 0.01. In contrast, solving A fails
to converge after a few thousand of steps. Solving Mdd takes
about 1 or 2 steps to reach a relative residual of 10−5, and solv-
ing Mcc takes at most 43 steps to achieve the same accuracy.
The conventional method fails to solve this example. To make
a comparison with the conventional method, we simulate a
smaller plasma structure with 1 796 632 unknowns. The pro-
posed method costs 834.07 s only, whereas the conventional
method takes 2919.77 s.

F. Dielectric Cavity With Divergence-Free Solution
All examples given in the above have both curl-free and

divergence-free components in the field solution. In this sub-
section, we simulate an example whose solution is dominated
by the divergence-free component. It is a dielectric cube of
side length 1 m, filled with a material of dielectric constant 4.
The frequency simulated is 300 MHz, and hence the structure
is of two wavelengths considering the dielectric fill-in. The
structure is discretized with a mesh size of wavelength over
10, and thereby 0.05 m. A current source is launched from the
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Fig. 9. Convergence comparison between solving A and solving AL for an
antenna example.

Fig. 10. S-parameters simulated from a large-scale package structure having
over 15 million unknowns. (a) S6,2 magnitude. (b) S6,2 phase.

bottom to the top of the cavity along z-direction and located at
the center of the cavity. The cavity is truncated by a Neumann
boundary condition. The Vh component accounts for 99.97%
of the field solution in this example. This is found by solving
(1) as it is to obtain e, and then deducting the V0-component
from e to get its eh component.

Fig. 11. Convergence comparison for solving a dielectric cavity dominated
by a divergence-free solution.

We then solve (34) only, and find the resultant solution
agrees very well with that solved from (1), without the need
for adding the curl-free component. The resultant convergence
curve is shown in Fig. 11 in comparison with the conventional
iterative solution of (1). As can be seen, even for this example
in which the conventional solution is not difficult to converge,
the proposed method converges much faster. The time cost of
the proposed method is 3.02 s, while that of the conventional
one is 13.73 s.

VI. CONCLUSION

A new method is developed to accelerate the convergence
of an iterative PDE-based solution of Maxwell’s equations.
Different from prevailing methods that rely on the develop-
ment of a good preconditioner, the proposed method directly
replaces the original system matrix by its Laplacian counter-
part when solving the divergence-free component of the field
solution. Such a change of the original system matrix is exact
without making approximations. Furthermore, the Laplacian
counterpart is built analytically from the original system
matrix and the mesh information without any computational
cost. And the iterative solution of the resultant Laplacian-based
system matrix converges fast irrespective of the matrix size.
After the divergence-free component is found, the curl-free
component is also solved from Laplacian matrices, and hence
having a fast convergence. In addition, the proposed method
is rigorous and effective at both high and low frequencies.
Applications to a variety of problems including on-chip cir-
cuits, antenna problems, and large-scale packaging structures
have demonstrated the superior performance of the proposed
new method. These problems include those dominated by curl-
free solutions, divergence-free solutions, and the combination
of both, for which the proposed method is shown to have
advantages.
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