Reliability Map Estimation For CNN-Based Camera Model Attribution

David Güera¹, Sri Kalyan Yarlagadda¹, Paolo Bestagini², Fengqing Zhu¹, Stefano Tubaro², Edward J. Delp¹
¹VIPER Lab, Purdue University ²Politecnico di Milano

Introduction

• **Camera model attribution**: detect which camera model has been used to acquire an image by only exploiting pixel information
• CNNs have enabled camera model attribution methods to work well even on small image patches
• Some patches of an image may not contain enough information related to the camera model (e.g., saturated patches)

Our Contribution: Reliability Map Estimation (RME)

• CNN-based solution to estimate the camera model attribution reliability of a given image patch
• RME indicates which portions of the image contain reliable camera traces
• RME can drive tampering localization methods

Proposed Approach

- **Transfer learning** enables to preserve part of the CNN estimation by a series of fully connected layers for patch reliability architecture proposed in [1]
- **Localization methods** given image patch estimate the camera model

Experimental Validation

- The proposed approach leverages CNN feature learning capabilities and transfer learning training strategies
 - Specifically, we make use of a CNN composed by the architecture proposed in [1] as feature extractor, followed by a series of fully connected layers for patch reliability estimation
 - Transfer learning enables to preserve part of the CNN weights of [1], and train the whole architecture end-to-end with a reduced number of image patches
- Our strategy is validated on the Dresden Image Database [2]
 - We first validate the proposed architecture and training strategy
 - Then, we compare the proposed solution against a set of baseline methodologies based on classic supervised machine learning techniques
 - Finally, we show that it is possible to increase camera model attribution accuracy by more than 8% with respect to [1] using our proposed approach

Results

- **Qualitative**
 - By using our proposed approach, we achieve a significant improvement in the camera model attribution accuracy

- **Quantitative**
 - The proposed approach outperforms baseline methodologies in terms of accuracy

Acknowledgments

This material is based upon research sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under agreement numbers F30602-15-2-0017 and FA8750-16-2-0001.