ME 563 HOMEWORK # 1 (Solutions) Fall 2010

PROBLEM 1: (40%)

Derive the equations of motion for the three systems given using N&utentechniques (A, B, and C)
and energy/power methods &kd B only).
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System (A)

Our assumptions in this problem are the following:

1. There is no slip between the pulley and the cable on which it rolls (i.e., each point of contact or
pulley in contact with cable is instantaneously at rest);

2. The springs are Bihitially undeformed when the disk is released,;

3. The angle of rotation of the wheel is relatively small on the order of < 0.1 radians;

4. Gravity is acting vertically downward.

We begin by describing the kinematics of the wheel as it rotates and tramsliiesdiagram shown
below. Note there is a single degiaereedom because of the no slip constraint.



Constaint:
Xx=R

#DOFs=2(x,) D1 =1
Points a and b:

X=X+a sin!
Xp=X-b sin!

Newton/Euler: The next step is to draw the free body diagram of the wheel as shown below.
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EulerOs equation can then be applied about @dimtminimize the number of equations needed. Note
that the moment arms for the two spring forces are computed assuming a small.angle,

FBD is shown slightly
exaggerated with the
asumption that the angle
of rotation is small

+ JE M, = HQ .+ ¥, x Mi.,, = H, + 0 (because velocities of points O and CM are parallel)
= ]06(_k) )
- (., + MR Jk
=(K,(c+ab)+ K, (x+ab)] R+a)+[K,(x-56)+K,(x-b6)} (R - b)k

The scalar equation of motion can thenelxpressed as follows in terms of the x!(pcoordinate only
using the kinematic rolling constraint and then dividing both sides of the equation by R:
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At this point, we check our final equation of motion to make sure it is rebkon The inertia
coefficient is positive; the stiffness coefficient is also positive. The units are also correct. It may ofter
help to check for special sets of system parameters. For example, when b=R and a=0, the only stiffne
that resists the matn for small rotations i&1+K3 at the center of mass of the wheel; the equation of
motion correctly describes this scenario.



Energy/Power: To derive the equation of motion for system A using energy methods, we first computt
the kinetic and potential ergy expressions and substitute the kinematic rolling constraint:
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Then we apply the first law power equation and differentiate as necessary noting:thabor general
oscillations:

i(T +V)= aw,.
dt dt
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This equation matches the equation of motion (EOM) we obtained using EulerOs method.

System (B)

Our assumptions in this problem are the following:

1. There is no slip between the wheel and the surface on which it rolls (i.e., point of contact on
wheel is intantaneously at rest);

2. The springs are all initially undeformed;F~undeformed length oK; and x;,=undeformed
length ofK3) when the system is released,;

3. The cable in inextensible (i.e., its length cannot change) and is always in tension;

4. Gravity is actimg vertically downward.

We begin by describing the kinematics of the pulley as it rotates and translates in the diagram show
below. Note there is a single degiaereedom because of the no slip constraint.



Xj: Constrains (2}

X1 =Rl
Xo = EPXy
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Newton/Euler: Te next step is to draw the free body diagrams of the pulley and mass as shown below.

EulerOs equation can then be applied about @ointich is inside the pulley at the point of contact
tangency with the cable, and Newt@s second law can be applied tarMhe positive vertical direction
to minimize the number of equations needed.

- (JE M, =H, +i,x Mi.,, = H, + 0 (because velocities of points O and CM are parallel)
= 1,0k
= (1., + MR Jk
= (- K,(x, - x,, )R + MgR+2RT, k
+1 EFMZ’3 = M,%,
=T, -M,g _Kz(xz - x2u)
We must then eliminate two of the coordinates in favor of the selected independent coordinate, whic

we select to be;. Then we substitute the second (force) equation above into the first (moment)
equation and divide both sides by R as follows:
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At this point, we check our final equation of motion to make sure it is reasonable. The inertia
coefficient is positive; the stiffness coefficient is also positive. The units are also correct. It is also clea
from the equation of motion that gravitational forces applied to both inertias tend to ingraaddhat

larger (smaller) undeformed lengtky, (x2,) lead to increases in.x

Energy/Power: To derive the equation of motion for system B using energy methods, we first comput
the kinetic and potential energy expressions and substitute the kinematic no slip constraint:
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Then we apply the first law power equation and differentiate as necessary noting-itafor general
oscillations:

i(T + V)= .
dt dt
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This equation matches the equation of motion (EOM) we obtained using EulerOs method.

System (C)

Our assumptions in this problem are the following:

1. Only the vertical motion and rotation are considered (lateral motions are ignored);

2. The springs are all initially undeformeg.fFundeformed length oK; and y,,=undeformed
length ofK;) when the gstem is released;

3. The angle of rotation is relatively small;

4. Gravity is acting vertically downward.

We begin by describing the kinematics of the wing section as it rotates and translates in the diagra
shown below. Note there are two degreéfreedombecause there is not kinematic relationship
between the vertical motion and the rotational motion.
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Newton/Euler: The next step is to draw the free body diagram of the wing section as shown below.
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EulerOs equation can then be applied about @dinand NewtonOs second law can be written in the
positive y direction.
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= 1,6k
= +K2(yo _youbk
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We must then eliminate two of the coordinates in favor of the two selected independent coordinate:
which we select to begand! :

ICMé + I<2a26 - KZayc_ = _aK2you
M)}c +(Kl +K2)yc _KZaH = Mg+K1ycu +K2you

At this point, we check our final equations of motion to make sure they are reasonable. The inerti
coefficients in each equation are positive; the stiffness coefficients are also positive. Theewalge ar
correct. It is also clear from the equation of motion that gravitational forces tend to ingraasehat

larger undeformed lengthgyand y, lead to increases in.y



PROBLEM 2: (40%)

A grinder of mass, M, is mounted to a base whoseeaubbpports have stiffness K and damping of B.
The unbalanced effect can be modeled as mass m with eccentricity r. The wheel $pd2eriige the
equations of motion of the two systems shown below: (a) system without a dynamic absorber, and (t
system wih a dynamic absorber of mass &hd stiffness K Use the coordinate directions shown.

Ly

(A) Without absorber (B) With absorber

Our assumptions in this problem are the following:

1. Only the vertical motion and rotation are consid€gtatéral motions are ignored);

2. The springs are all initially undeformed when the system is released (the undeformed length:
need not be used because gravity is being ignored in the next assumption);

3. Gravity is ignored.

We begin by describing the kineneiof the grinder as it translates and the eccentricity rotates in the
diagram shown below. Note there is only one degfdeeedom because the wheel speed is given and
is a constant. 1§ had been a variable as well, then there would have been twa DOFs

Constraing (1)
Xm = XDdDr sin!

EXm

#DOFs=2(x,) P1 =1




Newton/Euler: The next step is to draw the free body diagrams of the grinder base and eccentr
rotating mass as shown below.
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NewtonOs second law can then be applied the grinder and retatmric mass:

L YF = (M-m)

M-m,j
=-Kx-Bx+ f,
+ | EF . =mi, =mjé+rwzsinwt)
mj
=-/

We must then combine these two equations to eliminate the unknown force in the vertical direction:

(M -m)i + B + Kx = 1,
(M —=m)i + Bx + Kx = -m )'c'+rw2sina)t]
M5 + Bx + Kx = —mrw’ sin ot

At this point, we check our final equations of motion to make sure they are reasommablenertia
coefficient is positive; the stiffness coefficient is also positive. The units are also correct. The negativ
sign on the right hand side of the equation also make physical sense because we would anticipate tha
the eccentric mass spinstime positivel direction (with respect to the zero degree reference direction),
the grinder of mass M would be pulled upwards in ti direction.

When the absorber mass is added, we proceed with the same set of assumptions.

Constraing (1)
Xm = XDdDr sin!

T T ) #DOFs=3(x,y},) b1 =2




Newton/Euler: The next step is to draw the free body diagrams of the grinder base, eccentric rotatin
mass and absorber mass as shown below.
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NewtonOs second law can then be applied the grinder, rotating eccergramchabsorber:

+ EFM_m,ﬁ = (M -m)k
= —Kx-Bi+K,(y-x)+ 1.

+ EF,,,,} =mx, =ml¥ + ro’ sinwt
=-/

+ Eme3 =m,j

- K,(-)

We must then combine these three equations to eliminate the unknown force in the vertical direction:

(M-mpi+Bi+(K+K,)-K,y=f.
(M—m)ic'+ch+(K+Ka)x—Kay=—m(5c'+ra)2 sinwt}
M+ Bi+ (K + K, v - K,y = —mro” sin wt

and

m,y+K,y-K x=0

At this point, we check our final equations of motion to make sure they are reasoiialkelenertia
coefficients are positive; the stiffness coefficients are also positive. The units are also correct. Th
alternating positive/negative signs in the two equations of motion for the x and y variables also mak
sense because the grinder andbdier mass push/pull on one another.
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PROBLEM 3 (20%)

The figure below illustrates the components in a traditional loud spédkdel the speaker and derive
its equation of motion. Include all components necessary to describe the important mebkaaidar
of the speaker. Do NOT assume that the cone and diaphragm-ayenaxetric.
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Our assumptions in this problem are the following:

1. Changes in pressure on the outside of the speaker cabinet in the surrounding environment can
ignored compeed to changes within the cabinet;

2. The effects of gravity can be ignored;

3. The speaker cone and diaphragm are not axisymmetric so the center of mass of the cone mas:
not located at its geometric center;

4. The flexures must provide both horizontal and eattrestoring forces to properly constrain the
rotational motion of the cone;

5. The rotational motion is assumed to be small (0.1 rad).

We begin by drawing a schematic of the speaker below to highlight the most important elements of th
model. Notes regamy the model are also provided in the illustration. A kinematic drawing is also
given below to help explain the motions of the speaker cone and, in particular, the deflections in th
diaphragm. Lastly, a free body diagram of the cone is given belover & Newton equations take

the following forms in this case:

_JEMCM =HCM
= 1.6k
K, —ablis - ab)i— (K, + A, X+ 56%—(C, + Ay Ni+56 b - K, + A, P k
+PYF =My
M.j
= _KVy_CVy_(KV +AKV)y_(CV +Acv)y+fy(t)
+— Y F | =M

M,i

= K,(r-a0)-C, (i -ab ) (K, + A, X +50)-(C, + Ay, N +56)- K,px+ £.(1)

These three equations are then rewritten in the final form as shown below:
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Notes:

fx(t) BLongitudinal input due to electromagne
drive; proportional to input current

fy(t) BVertical input due to electromagnetic
drive; proportional to input curremaind caused
by rotation of armature

%- Used to represent asymmetry in stiffness
damping parameters

Kp B Accounts for stiffness due to small chan
in volume of enclosure; this stiffness only act
in the longitudinal direction and does not affe
the iotational motion because small rotations
not change the volume of enclosure

Kt BAccounts for rotational stiffness of flexui

Notes:

#DOFs = 3 (x,},) PO = 3

Motion of cone at diaphragm for smaéll

j yL : v
" AN Xa=xBal and ¥=x+b!
i RN
k l N\

A free body diagram of the spealamne is given below:
Notes:
We have ignored the small momer

produced by the vertical spring anc
damper forces of the diaphragm.

We have also assumed the EM for
acts through the CM.

[0,0+@C, +0°(C, + AP + @K, + b (K, + Ay, )+ 2K, + Ay P

—(aC, —=bC,~bA, Ji - (aK, —bK ,~bA, ) =0
My + (ZCV +Aq p+ (2KV + AKV)y = f,(0)
Mx + (2CL + ACL))'C + (2KL + AKL)X - (aCL -bC, - bACLﬁ - (aKL -bK, - bAKLh = f.(0)

Note that the y equation is uncoupled from the other two equations as expected due to our assumptic
about the small rotations.



