
ME 563    HOMEWORK # 1 (Solutions)   Fall 2010 
 
 
 
 
PROBLEM 1:  (40%) 
 
Derive the equations of motion for the three systems given using Newton-Euler techniques (A, B, and C) 
and energy/power methods (A and B only). 

 
System (A) 
 
Our assumptions in this problem are the following: 
 

1. There is no slip between the pulley and the cable on which it rolls (i.e., each point of contact on 
pulley in contact with cable is instantaneously at rest); 

2. The springs are all initially undeformed when the disk is released; 
3. The angle of rotation of the wheel is relatively small on the order of < 0.1 radians; 
4. Gravity is acting vertically downward. 

 
We begin by describing the kinematics of the wheel as it rotates and translates in the diagram shown 
below.  Note there is a single degree-of-freedom because of the no slip constraint. 
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Newton/Euler:  The next step is to draw the free body diagram of the wheel as shown below.   

 
 
EulerÕs equation can then be applied about point O to minimize the number of equations needed.  Note 
that the moment arms for the two spring forces are computed assuming a small angle, ! . 

 

 
The scalar equation of motion can then be expressed as follows in terms of the x (or ! ) coordinate only 
using the kinematic rolling constraint and then dividing both sides of the equation by R: 
 

 
At this point, we check our final equation of motion to make sure it is reasonable.  The inertia 
coefficient is positive; the stiffness coefficient is also positive.  The units are also correct.  It may often 
help to check for special sets of system parameters.  For example, when b=R and a=0, the only stiffness 
that resists the motion for small rotations is K1+K3 at the center of mass of the wheel; the equation of 
motion correctly describes this scenario. 
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Energy/Power:  To derive the equation of motion for system A using energy methods, we first compute 
the kinetic and potential energy expressions and substitute the kinematic rolling constraint: 
 

 

 
Then we apply the first law power equation and differentiate as necessary noting that  for general 
oscillations: 
 

 

 
This equation matches the equation of motion (EOM) we obtained using EulerÕs method. 
 
 
System (B) 
 
Our assumptions in this problem are the following: 
 

1. There is no slip between the wheel and the surface on which it rolls (i.e., point of contact on 
wheel is instantaneously at rest); 

2. The springs are all initially undeformed (x1u=undeformed length of K1 and x2u=undeformed 
length of K2) when the system is released; 

3. The cable in inextensible (i.e., its length cannot change) and is always in tension; 
4. Gravity is acting vertically downward. 

 
We begin by describing the kinematics of the pulley as it rotates and translates in the diagram shown 
below.  Note there is a single degree-of-freedom because of the no slip constraint. 
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Newton/Euler:  The next step is to draw the free body diagrams of the pulley and mass as shown below.   
 

 
 
EulerÕs equation can then be applied about point O, which is inside the pulley at the point of contact 
tangency with the cable, and NewtonÕs second law can be applied to M2 in the positive vertical direction 
to minimize the number of equations needed. 

 

 
We must then eliminate two of the coordinates in favor of the selected independent coordinate, which 
we select to be x1.  Then we substitute the second (force) equation above into the first (moment) 
equation and divide both sides by R as follows: 
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At this point, we check our final equation of motion to make sure it is reasonable.  The inertia 
coefficient is positive; the stiffness coefficient is also positive.  The units are also correct.  It is also clear 
from the equation of motion that gravitational forces applied to both inertias tend to increase x1 and that 
larger (smaller) undeformed lengths x1u (x2u) lead to increases in x1. 
 
Energy/Power:  To derive the equation of motion for system B using energy methods, we first compute 
the kinetic and potential energy expressions and substitute the kinematic no slip constraint: 
 

 

 
Then we apply the first law power equation and differentiate as necessary noting that  for general 
oscillations: 
 

 

 
This equation matches the equation of motion (EOM) we obtained using EulerÕs method. 
 
 
System (C) 
 
Our assumptions in this problem are the following: 
 

1. Only the vertical motion and rotation are considered (lateral motions are ignored); 
2. The springs are all initially undeformed (ycu=undeformed length of K1 and you=undeformed 

length of K2) when the system is released; 
3. The angle of rotation is relatively small; 
4. Gravity is acting vertically downward. 

 
We begin by describing the kinematics of the wing section as it rotates and translates in the diagram 
shown below.  Note there are two degrees-of-freedom because there is not kinematic relationship 
between the vertical motion and the rotational motion. 
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Newton/Euler:  The next step is to draw the free body diagram of the wing section as shown below.   
 

 
 
EulerÕs equation can then be applied about point CM and NewtonÕs second law can be written in the 
positive yc direction. 

 

 
We must then eliminate two of the coordinates in favor of the two selected independent coordinates, 
which we select to be yc and ! : 
 

 

 
At this point, we check our final equations of motion to make sure they are reasonable.  The inertia 
coefficients in each equation are positive; the stiffness coefficients are also positive.  The units are also 
correct.  It is also clear from the equation of motion that gravitational forces tend to increase yc and that 
larger undeformed lengths ycu and you lead to increases in yc.   
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PROBLEM 2: (40%) 
 
A grinder of mass, M, is mounted to a base whose rubber supports have stiffness K and damping of B. 
The unbalanced effect can be modeled as mass m with eccentricity r. The wheel speed is $ . Derive the 
equations of motion of the two systems shown below: (a) system without a dynamic absorber, and (b) 
system with a dynamic absorber of mass Ma and stiffness Ka. Use the coordinate directions shown. 

 

 

        (A)  Without absorber          (B)  With absorber 

 
Our assumptions in this problem are the following: 
 

1. Only the vertical motion and rotation are considered (lateral motions are ignored); 
2. The springs are all initially undeformed when the system is released (the undeformed lengths 

need not be used because gravity is being ignored in the next assumption); 
3. Gravity is ignored. 

 
We begin by describing the kinematics of the grinder as it translates and the eccentricity rotates in the 
diagram shown below.  Note there is only one degree-of-freedom because the wheel speed is given and 
is a constant.  If $  had been a variable as well, then there would have been two DOFs. 
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Newton/Euler:  The next step is to draw the free body diagrams of the grinder base and eccentric 
rotating mass as shown below.   
 

 
 
NewtonÕs second law can then be applied the grinder and rotating eccentric mass: 

 

 
We must then combine these two equations to eliminate the unknown force in the vertical direction: 
 

 

 
At this point, we check our final equations of motion to make sure they are reasonable.  The inertia 
coefficient is positive; the stiffness coefficient is also positive.  The units are also correct.  The negative 
sign on the right hand side of the equation also make physical sense because we would anticipate that as 
the eccentric mass spins in the positive !  direction (with respect to the zero degree reference direction), 
the grinder of mass M-m would be pulled upwards in the Ðx direction. 
 
When the absorber mass is added, we proceed with the same set of assumptions.   
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Newton/Euler:  The next step is to draw the free body diagrams of the grinder base, eccentric rotating 
mass and absorber mass as shown below.   
 

 
 
NewtonÕs second law can then be applied the grinder, rotating eccentric mass and absorber: 

 

 
We must then combine these three equations to eliminate the unknown force in the vertical direction: 
 

 

 
At this point, we check our final equations of motion to make sure they are reasonable.  The inertia 
coefficients are positive; the stiffness coefficients are also positive.  The units are also correct.  The 
alternating positive/negative signs in the two equations of motion for the x and y variables also make 
sense because the grinder and absorber mass push/pull on one another. 
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PROBLEM 3 (20%) 

The figure below illustrates the components in a traditional loud speaker. Model the speaker and derive 
its equation of motion. Include all components necessary to describe the important mechanical behavior 
of the speaker.  Do NOT assume that the cone and diaphragm are axi-symmetric. 

 

 
 
Our assumptions in this problem are the following: 
 

1. Changes in pressure on the outside of the speaker cabinet in the surrounding environment can be 
ignored compared to changes within the cabinet; 

2. The effects of gravity can be ignored; 
3. The speaker cone and diaphragm are not axisymmetric so the center of mass of the cone mass is 

not located at its geometric center; 
4. The flexures must provide both horizontal and vertical restoring forces to properly constrain the 

rotational motion of the cone; 
5. The rotational motion is assumed to be small (0.1 rad). 

 
We begin by drawing a schematic of the speaker below to highlight the most important elements of the 
model.  Notes regarding the model are also provided in the illustration.  A kinematic drawing is also 
given below to help explain the motions of the speaker cone and, in particular, the deflections in the 
diaphragm.  Lastly, a free body diagram of the cone is given below.  Euler and Newton equations take 
the following forms in this case: 

 
 
These three equations are then rewritten in the final form as shown below: 

Voice coil 



 11 

 

 
 
A free body diagram of the speaker cone is given below: 

 
 

 

 
Note that the y equation is uncoupled from the other two equations as expected due to our assumptions 
about the small rotations. 
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Notes: 
fx(t) Ð Longitudinal input due to electromagnetic 
drive; proportional to input current 
fy(t) Ð Vertical input due to electromagnetic 
drive; proportional to input current and caused 
by rotation of armature 
% - Used to represent asymmetry in stiffness and 
damping parameters 
KP Ð Accounts for stiffness due to small change 
in volume of enclosure; this stiffness only acts 
in the longitudinal direction and does not affect 
the rotational motion because small rotations do 
not change the volume of enclosure 
KT Ð Accounts for rotational stiffness of flexure 
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