Selecting Forage Machinery

Dennis Buckmaster
Purdue University

2008 Indiana Cattle and Forage Symposium

Forage Systems Operations

- Mow / condition
 - Invert
 - Ted
- Rake
- Bale
 - Stack for storage
 - Wrap for storage
 - Pack into bag
- Bulk transport
 - Blow into silo
 - Pack into bunker
- Chop / roll process
 - Packaged transport
Presentation Outline

- Making Hay
 - Capacity equations
 - Typical systems & costs
 - Custom rates
 - Machine features & tractor matching
- Making Silage
 - Harvester capacity/power relationship
 - Putting it away (blower, bagger, bunker)
- Machine Capacity
 - Potential Limits to Machine Capacity
 - Power
 - Throughput
 - Speed
 - Traction (hopefully not a factor with haymaking equipment)
Machine Capacity
Mower-Conditioner

- Potential Limits to Machine Capacity
 - Power (particularly with disc cutting)
 - Throughput (perhaps of conditioner)
 - Speed (particularly with sickle cutting)

Machine Capacity
Rakes & Inverters

- Potential Limits to Machine Capacity
 - Power (not likely)
 - Throughput (perhaps)
 - Speed (likely excessive loss at high speeds)
Machine Capacity
Balers

- Potential Limits to Machine Capacity
 - Power (possibly)
 - Throughput
 - Speed (exceed suitable speed for the pickup)

Required Capacity

\[
C_{ac/h} = \frac{A_{ac}}{B_{days} \cdot G_{h/day} \cdot PWD_{decimal}}
\]

Example:
Mow 150 acres in 14 calendar days if 3 of 10 days suitable for working (pwd=0.3). 8 h/d available for mowing.

\[
C = \frac{150}{[(14)(8)(0.3)]} = 4.5 \text{ ac/h}
\]
PWD Factors

- Operation to be performed
- Geographic/Climatic location
- Time of year
- Soil conditions (slope, type, drainage)
- Probability level (e.g., 50%, 90% of years)

A good dinner or lunch-time debate topic

- What is the pwd for **hay mowing** in our area in late May?
- What is the pwd for **hay raking** in our area in late May?
- What is the pwd for **hay baling** in our area in late May?
Machine Capacity

\[C_{ac/h} = \frac{S_{mph} W_{ft} E_f}{8.25} \]

Example: 9’ Sickle mower-conditioner at 5.0 mph. Typical field efficiency is 80%.
\[C = \frac{(5.0)(9)(0.8)}{8.25} \]
\[C = 4.4 \text{ ac/h} \]

Simple Capacity Tool
Typical Speeds & Field Efficiencies

<table>
<thead>
<tr>
<th>Operation</th>
<th>Typical Speed (mph)</th>
<th>Typical Field Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sickle Mower-Conditioner</td>
<td>5.0</td>
<td>80</td>
</tr>
<tr>
<td>Disc Mower-Conditioner</td>
<td>8.5</td>
<td>80</td>
</tr>
<tr>
<td>Rake</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Small Rectangular Baler</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Large Round Baler</td>
<td>5.5</td>
<td>65</td>
</tr>
<tr>
<td>Large Rectangular Baler</td>
<td>6.0</td>
<td>80</td>
</tr>
</tbody>
</table>

Accounts for: turning, breaks, overlap, anything keeping you from 100% of machine utilization.

Round Baler Step by Step analysis

- Maximum throughput of 30 tons/hour
- 90% maximum field efficiency (turns & breaks)
- Effective maximum throughput of 27 tons/h (54,000 lb/h)
- Bale weight of 1200 lb
- Time to form bale is 80 seconds @ maximum capacity (but who can do that?)
- Time to form bale is 120 seconds at 2/3 max capacity
- Twine wrap, eject, & operator delay time of 25 seconds
- Actual rate is 1200 lb/(120s + 25 s) = 14.9 tons/h
- Utilization rate is 14.9/30 or 48%
Typical Hay Equipment Sets

Small Rectangular Bales
100 to 300 tons DM/year
(20 to 60 acres)

- 9’ Mower-conditioner
- Rake
- Small baler
- 2 wagons
- Labor: 1.4 – 2.1 h/t DM
- Cost: $42 – 69 / t DM

Typical Hay Equipment Sets

Small Rectangular Bales
200 to 400 tons DM/year
(40 to 80 acres)

- 8-12’ Mower-conditioner
- Tandem Rake
- Medium baler
- 3 wagons
- Labor: 1.0 – 1.4 h / t DM
- Cost: $36 – 52 / t DM
Typical Hay Equipment Sets

Small Rectangular Bales
300 to 600 tons DM/year
(60 to 120 acres)
- 12-14’ Mower-conditioner
- Tandem Rake
- Large baler
- 4 wagons or automatic bale wagon
- Labor: 0.5 – 1.0 h / t DM
- Cost: $29 – 41 / t DM

Typical Hay Equipment Sets

Large Round Bales
100 to 300 tons DM/year
(20 to 60 acres)
- 9’ Mower-conditioner
- Rake
- Small baler
- 1 wagons
- Labor: 1.2 – 1.4 h/t DM
- Cost: $44 – 67 / t DM
Typical Hay Equipment Sets

Large Round Bales
200 to 400 tons DM/year
(40 to 80 acres)
- 8-12’ Mower-conditioner
- Tandem Rake
- Medium baler
- 1-2 wagons
- Labor: 0.9 – 1.1 h / t DM
- Cost: $36 – 43 / t DM

Typical Hay Equipment Sets

Large Round Bales
300 to 600 tons DM/year
(60 to 120 acres)
- 12-14’ Mower-conditioner
- Tandem Rake
- Large baler
- 2 wagons or truck
- Labor: 0.7 – 0.9 h / t DM
- Cost: $28 – 33 / t DM
Custom Rates
Mowing-conditioning

- IN: $12.30/acre
- PA: $13.40/acre
- OH: $11.80/acre
- KY: $11.30/acre

Custom Rates
Raking

- IN: $5.90/acre
- PA: $7.80/acre
- OH: $5.90/acre
- KY: $5.40/acre
Custom Rates
Rectangular Baling

- IN: $0.64/bale
- PA: $0.67/bale
- OH: $0.44/bale
- KY: $0.56/bale

Custom Rates
Mow-Rake-Bale-Store
Small Rectangular Bales

- IN: ??
- PA: $1.60/bale
- OH: $32.50/ton
- KY: $1.58/bale
Custom Rates
Large Round Baling

Large Round Baling
- IN: $8.80/bale
- PA: $6.60/bale
- OH: $8.70/bale
- KY: $8.60/bale

The Machinery Portion of hay production costs ...

- Hay @ $100/ton with 50 lb bales is worth $2.50/bale.
- At custom rates, machinery (with labor) expense is about $1.60/bale → 64%
- Depending on the system, machinery (with labor) costs are 29 to 69/ton → 40-90%
Mower-Conditioners

- Cut type:
 - Sickle
 - Disc

- Conditioner type:
 - Roll, “rubber”
 - Rolls, steel
 - Flail/Impellar

- Other features & options

Cut Type

- Sickle
 - Clean cut
 - Speed limited
 - Low power requirement

- Disc/Rotary
 - Good in lodged crops
 - “Never” plug
 - Higher power requirement
Tractor Requirements

- Sickle Mower-conditioners
- Disc Mower-conditioners

Conditioner Type

- "Rubber" rolls
 - Crimp & crush with pressure
- Steel rolls
 - Crimp & crush with pressure
- Flail, Impellar, or Tine
 - Scuffing action
- Regardless of type, more aggressive conditioning increases drying rate and increases loss
Some Mower Features

- Side windrow attachment for wider units
- No tools adjustments (swath width, roll pressure, tine clearance, etc.)
- Split swath on wider units
- Cutterbar angle tilt adjustment
- Variable reel speed
- Suspension of cutterbar

Rakes & Other Swath Manipulation Equipment

- Rake Types
 - Parallel bar
 - Rotary
 - Wheel
- Other Swath Manipulation machinery
 - Tedders
 - Inverters
- Features
Rake Type

- **Parallel Bar**
 - Lowest loss, particularly with legumes
 - Ground or variable speed hydraulic drive

- **Wheel**
 - Higher speed
 - Higher potential for rock collection

- **Rotary**
 - Sometimes dual function (tedder & rake)

Swath Manipulation Features

- Drawbar or hitch mount
- Adjustable swath & windrow width
- Variable speed
- Hydraulic folding
- Windrow inverters & mergers
- Tedders
- Tandem axles
Small Rectangular Balers

- Sizes & Styles
 - 14”x18”, 16”x18”, 15”x22”
 - Inline & offset
- Features
 - Bale Thrower
 - Hydraulic tension control
 - Pickup heads
 - Pre-pack chamber
- Tractor Matching:
 - 35 hp minimum
 - Could use up over 100 hp

Large Round Balers

- Sizes & Types
- Tractor Matching
- Features
Large Round Balers

- Typical Sizes (width by max diameter):
 - 4’x39”
 - 4’x4’
 - 4’x5’
 - 5’x5’
 - 5’x6’

- Types
 - Fixed chamber (soft core, high density outside)
 - Variable chamber (uniform bale density)

Large Round Balers

- Tractor Requirements:
 - 4’ width – 45 to 65 hp (more with silage specials)
 - 5’ width 70-100 hp
Large Round Balers Features

- Twine or net wrap
- Hydraulic pickup (variable speed & reversible)
- Silage special (heavier bales, “sticky” crop)
- Bale slicers

Large Round Balers Features

- Tandem axles, wider tires
- Automatic controls
- Automatic lubricators
- Integrated plastic wrapping
Large Rectangular Balers

- Need 90-200 hp
- Very high capacity (50+ tons/hr)

40 tons/hr example

- 2.5 tons/acre yield
- 6 mph
- .85 field efficiency

\[C_{\text{tons/hr}} = \frac{S_{\text{mph}} W_{\text{ft}} E_f Y_{\text{tons/ac}}}{8.25} \]

- Requires 26 ft of width
- Would cover 16 acres per hour
Packaged Hay Transport

- Small package options
 - Stack on wagon
 - Throw to wagon
 - Drop then collect

- Large package options
 - Loader & wagon or trailer
 - Auto-loading transporters

Bale Handling Equipment
A brief diversion to discuss baled silage

Forage Moisture Continuum

- 12%: Safe for hay or dry in-barn
- 20%: Apply preservative
- 30%: Suitable for silage
- 40%: Baled Silage
- 70%: Tower
- 80%: FIRE

Baked Silage

Tower
Hay vs Silage

HAY: Low moisture so respiration stops and bacteria, fungi, and yeasts cannot survive.

SILAGE: Create anaerobic environment and reduce pH to a level where bacteria, fungi, and yeast growth is inhibited.

Baled silage checklist

- **Bale Moisture:** Proper moisture for baleage is 45 to 60%.
- **Bale Density:** Bale density should be as high as possible.
- **Bale Sealing:** If wrapped, bales should be wrapped with four layers of plastic with 50% overlap. Seal holes with proper tape.
- **Bale Seal Delay:** Bales should be sealed within a few hours of baling.
Baled silage checklist

- **Storage site:** The storage site should be constructed to minimize punctures, standing water, and rodent or bird damage.

- **Bale Stacking:** Avoid stacking of bales and, if possible, place them on their ends.

- **Forage Quality as Baled:** Forage should not be overly mature or have experienced significant rain damage.

- **Additive Use:** Inoculants should be used when wilting temperatures are cool and wilting time is short.

Wrappers & Tubers
If I were making hay
(for a living)

- Disc mower-conditioner for capacity
- Roll conditioner with legumes, flail conditioner with grasses
- Parallel bar rake with legumes, rotary rake with grasses
- Small square baler for flexibility
- Bale accumulator and loader grapple system
- Trailers, not wagons
- Can you talk me out of this system?

Presentation Outline

- Making Hay
 - Capacity equations
 - Typical systems & costs
 - Custom rates
 - Machine features & tractor matching
- Making Silage
 - Harvester capacity/power relationship
 - Putting it away (blower, bagger, bunker)
 - Transporter requirements
Potential Capacity Limiters

- Throughput capability
- Power
- Traction
- Speed
- Waiting on others

Hopefully well-matched
Ideally reasonably minimized

Waiting ...

- Requires analysis of each system component and their interactions
- First ... individual components
Harvester

- Whole-plant corn silage
 Top-end long-term capacity
 \[\text{tons/h} = \frac{\text{HP}}{2.5}\]
 OR \[2.5 \text{ hp h/ton}\]

- Haycrop silage
 Top-end, long-term capacity
 \[\text{tons/hour} = \frac{\text{HP}}{4.0}\]
 OR \[4.0 \text{ hp h/ton}\]

EXAMPLE:
- 300 hp
 \[\frac{300}{2.5} = 120 \text{ tons/h corn}\]
 \[\frac{300}{4} = 75 \text{ tons/h haycrop}\]

Blower

- Whole-plant corn silage
 180 tons/h likely max
 Some idle time (~25%)
 \[1.6 \text{ hp h/ton}\]

- Haycrop silage
 110 tons/h likely max
 Some idle time (~25%)
 \[2.1 \text{ hp h/ton}\]

EXAMPLE:
- 200 hp
 \[\frac{200}{1.6} = 125 \text{ tons/h corn}\]
 \[95 \text{ tons/h avg w/ idle time}\]
 \[\frac{200}{2.1} = 95 \text{ tons/h haycrop}\]
 \[70 \text{ tons/h avg w/ idle time}\]
Bagger

- Whole-plant corn silage
 1 hp h/ton
- Haycrop silage
 1.5 hp h/ton

EXAMPLE:
120 hp
120/1 = 120 tons/h corn
120/1.5 = 80 tons/h haycrop

Bunker Packer

- Holmes & Muck (WI) model
 - 65% moisture
 - 6” layers
 - Target density of 16 lb DM/ft3
 - Continuous packing
 - 160 lb/PTO hp maximum practical ballast limit

... summary chart ...
Bunker Packer

Transport Needs
Cycle Analysis

Where I’m going …

- Graphical example: Pull-type harvester
- Spreadsheet implementation results
 - Pull-type harvester examples
 - SP harvester aid

PT Harvester Cycle Diagram

Doing this is tedious!
PT Harvester – haycrops

<table>
<thead>
<tr>
<th>Harvester Power (hp)</th>
<th>Round Trip Distance (mi)</th>
<th>Wagons required to keep harvester busy (or very nearly so)</th>
<th>Capacity with harvester busy (tons/hr)</th>
<th>Capacity with one less wagon (tons/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>2</td>
<td>3</td>
<td>30</td>
<td>19</td>
</tr>
<tr>
<td>150</td>
<td>4</td>
<td>4</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>3</td>
<td>39</td>
<td>21</td>
</tr>
<tr>
<td>200</td>
<td>4</td>
<td>4</td>
<td>39</td>
<td>29</td>
</tr>
<tr>
<td>250</td>
<td>2</td>
<td>4</td>
<td>46</td>
<td>23</td>
</tr>
<tr>
<td>250</td>
<td>4</td>
<td>3</td>
<td>45</td>
<td>30</td>
</tr>
</tbody>
</table>

46% decrease
26% decrease

Transport Needs via Cycle Analysis

- Worked “backwards” can yield number of transporters needed to keep the harvester busy
- Simulation mode of operation
 - Harvesters harvest directly into transport units (trucks)
 - Harvester power was varied from 200 hp to 575 hp
 - Maximum field efficiency of the harvester (system non-limiting) was 85%
 - Round trip transport distance was varied from 1 to 7 miles
 - Capacity of transport units was varied from 2 to 4 t DM
 - Speed of transport units was varied from 10 to 25 mph
Transport Needs with large SP harvesters

\[N_{t,req'd} = 1.6 + 0.077[C_c \cdot PH_{hp} \cdot D_{t,mi} / (V_{t,DM} \cdot S_{t,mph})] \]

\(R^2 = 0.997 \)

EXAMPLE:
- 350 hp harvester
- Haycrop silage (\(C_c = 1 \))
- 4 miles round trip
- 30 mph average transport speed
- 2 tons DM per load

\[N_{t,req'd} = 1.6 + 0.077[1 \cdot 350 \cdot 4 / (2 \cdot 30)] = 3.4 \]
Transport Needs with large SP harvesters

Base scenario (350 hp with haycrop silage)

\[N_{t,\text{req'd}} = 1.6 + 0.077\left[1 \times 350 \times 4/(2 \times 30)\right] = 3.4 \]

6 miles round trip

\[N_{t,\text{req'd}} = 1.6 + 0.077\left[1 \times 350 \times 6/(2 \times 30)\right] = 4.3 \]

Corn silage, 5 miles round trip

\[N_{t,\text{req'd}} = 1.6 + 0.077\left[1.6 \times 350 \times 5/(2 \times 30)\right] = 5.2 \]

Thank you for your attention.

For a limited time at:

http://cobweb.ecn.purdue.edu/~dbuckmas/ICFS

- This presentation
- Simple capacity tool
- Article regarding tractor cost and tool
- Cycle analysis reference and tool