Purdue University – Student Built Imaging Satellite

Giles Goetz
Marcos Hasebe
John Hawkins
Chris Patterson
Ramses Ramirez
Aric Simmons
Colin Sipe
Mission Statement

To design a low cost student-built satellite to take pictures of the Earth’s atmosphere and land masses and post them on Purdue University’s website for public relations purposes.
Satellite Subsystems

- Payload
- Satellite Structure
- Mission Life and Power
- Attitude Control
- Thermal Control
- Command and Data Handling
- Telecommunications
Payload

• Camera Requirements
 – Space Hardened CCD Camera with Frame-grabber System
 – Resolution of at least 1 km
 – Power Requirement of 10 Watts
 – Operating Temperature Range of 0 to 32 °C
 – Pointing of Satellite to be Determined Later
Satellite Structure

• Structure Requirements
 – Total Spacecraft Weight to be less than 50 kg
 – No Sensitive Materials or Special Care needed
 – Design for American Launch Vehicles
 • Titan, Delta, Atlas, Space Shuttle
 – Mounting Design Relies on Primary Payload
Mission Life and Power

• Mission Life Requirements
 – At Least 2 Months in Orbit, but Possibly Longer Depending on Solar Panels

• Power Requirements
 – Will Use Ni-Cd Batteries and Solar Panels
 – Full Power ~ 16 to 20 Watts
 – Standby Power ~ 3 to 5 Watts
Attitude Control

• Attitude and Control Requirements
 – Active Control
 • 3 axis Stabilized
 • Reaction Wheels and/or Magnetic Torquers
 – Passive Control
 • Barbeque Roll for Thermal Control
 • Magnets, Ballast, and Hysteresis Rods
Thermal Control

• Thermal Requirements
 – Keep Electronics and Batteries within Operating Range of 5 to 20 °C
 – All Sides of Satellite Covered with Solar Panels
 – Barbeque Roll to Distribute Heat
 – Black Silicone-based Paint to Increase Conductivity and Thermally Conducting Mats where needed
Telecommunications

• Basic elements to be determined
 – Type of Data
 – Coverage Area & Ground Site Locations
 – Capacity of Signal
 – Signal Strength
 – Connectivity to Ground Station
 – Availability of Communication with Satellite
Command and Data Handling

- Systems to be Controlled
 - Attitude Control / Position
 - Control Cameras
 - Thermal System
 - Sending and Transmitting Data
 - Power Management
 - Housekeeping Data
Conclusion

• Areas of Concern
 – Stabilization
 – Data Transfer
 – Thermal Control
 – Camera Operation
 – Redundant Systems