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L/D ≈ 40

takeoff distance ≈ 640 ft

endurance ≈ 24 hours

payload ≈ 85 short tons
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Problem

Goal: optimize design parameters; exploit tradeoffs

Challenges:

• Interacting disciplines

• Expensive function evaluations

• Local optima

• Multiple competing objectives
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→ Need some way of making this problem tractable
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Insight

• Surprisingly, many relationships in aircraft design have an underlying
convex structure.

• Moreover, they can be expressed in a standard form that people
write specialized software to solve.
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Today’s Talk

A New Design Framework

Selected GP-Compatible Models

Example
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Proposed Framework

All-at-once (AAO) formulation [Cramer et.al.]:

Decision Variables: Every unknown quantity

Objective: Tradeoff among performance metrics

Constraints: Physics-based models

Design constraints

Additionally,

• Restricted functional forms of objective and constraints

• Emphasis on mathematical properties of physics based models
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Geometric Program: Definition

Monomial Function

m(x) = c
n∏

i=1

xai
i , c > 0 (e.g., 1

2ρV
2CLS)

Posynomial Function: sum of monomials

p(x) =
K∑

k=1

ck

n∏
i=1

xaik
i , ck > 0 (e.g., w1

mpay
+ w2

Vmax
+ w3ṁfuel)

Geometric Program (GP)

minimize p0(x)
subject to pi (x) ≤ 1, i = 1, ...,Np,

mj (x) = 1, j = 1, ...,Nm

with pi posynomial, mi monomial
x = (x1, x2, ..., xn) > 0

[Boyd 2007]
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Geometric Program: Convex Formulation

variable change: yi := log xi

• Monomials m(x) = c
∏n

i=1 x
ai
i : affine in y after log transform

logm = b + aT y (b = log c)

• Posynomials
∑K

k=1 ck
∏n

i=1 x
aik
i : convex in y after log transform

log p = log

(
K∑

k=1

ebk +aT
k y

)

• GP in convex form

minimize log
(∑K

k=1 exp(b0k + aT
0ky)

)
subject to log

(∑K
k=1 exp(bik + aT

iky)
)
≤ 0, i = 1, . . . ,Np

Gy + h = 0
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Solution of Geometric Programs

Interior-point methods

u
−3 −2 −1 0 1

−5

0

5

10

c

x* x*(10)

[Figures: Boyd 2004]

Benefits:

• Globally optimal solution,
guaranteed

• Robust: no need for initial guesses
or parameter tuning

• Off-the-shelf solvers

Boyd GP benchmarks (2005) [1]

• dense GP: 1,000 variables; 10,000
constraints; < 1 minute

• sparse GP: 10,000 variables;
1,000,000 constraints; “minutes”
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Steady Level Flight Relations

   

L

mg

D T
mg = L =

1

2
ρV 2CLS

T = D =
1

2
ρV 2CDS

More models coming:

• CD : Constrained by drag model

• m: Constrained by mass models
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Drag and Mass Breakdowns

Drag breakdown

CD =
[CDA]0

S︸ ︷︷ ︸
non-wing
form drag

+ cd (CL,Re, τ)︸ ︷︷ ︸
wing profile drag

+
C 2

L

πeA︸︷︷︸
induced

drag

posynomial equality relaxation [Boyd 2007]

Mass breakdown

mdry ≥ mfixed + mpay + mwing

mtot ≥ mdry(1 + θfuel)
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Breguet Range Equation

R =
hf

g
η0

L

D
log(1 + θfuel )

1 ≥ gRD

hf η0L

1

log(1 + θfuel )

0.5 1 1.5 2

1

2

3

4

5

6

7

8

9

10

1/log(1 + θ
 fuel

)≥ 1.3404(θ
 fuel

)−0.87865

1/log(1 + θ
 fuel

)≥ 1.4508(θ
 fuel

)−0.69214

θ
 fuel

max error: 3.3873%

 

 

1/log(1 + θ
 fuel

)

monomial constraints
max−monomial
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Wing Structural Properties

Structural
requirement:

M0

S0
≤ σsafe

Applied root moment:

M0 ≥ 0.115m̃gb

Wing skin section modulus S0: Wing skin mass:

S0 ≤
0.81τS2tskin

b2
mskin ≥ ρskintskinS(2 + 0.4τ)
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Wing Profile Drag

≈ 10, 000 data points from cd (CL,Re, τ) for NACA-24xx airfoils,
generated using XFOIL [Drela 00]
• CL ranging from 0 to stall
• Re ranging from 105 (seagull) to 107 (small jet)
• τ ranging from 8% to 16%
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Example

minimize T1 + w
V2

subject to T2 ≤ Tmax

Level Flight Relations
Drag Model
Wing Structural Models

72 74 76 78 80 82 84 86
4

5

6

7

8

9

10

V
max

 [m/s]

T
m

in
 [
N

]
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Ease of Incorporating New Models

Example: tail sizing

CD ≥
[CDA]0

S
+ cd (CL,Re, τ) +

C 2
L

πeA

[CDA]0 ≥ [CDA]fuse + ctail, h
d Atail,h + ctail, v

d Atail,v

mdry ≥ mfixed + mpay + mwing + mtail
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GP as an MDO Framework

Benefits

• Extremely fast

• Globally optimal solutions

• Off-the-shelf solvers

Limitations

• Restricted functional forms

• No disciplinary solvers in the loop

Future work

• GP as a ‘discipline’

• Sigmoidal Programming

• Automatic identification of variable
transformations
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Posynomial Equality Relaxation

When can we guarantee
h(x) = 1 will hold at
optimum ?

minimize p0(x)
subject to pi (x) ≤ 1, i = 1, ...,Np,

mj (x) = 1, j = 1, ...,Nm

h(x)≤ 1

If ∃ xk s.t.:

• xk does not appear in monomial equality constraints, i.e.
∂mj

∂xk
= 0

• p0 monotone strictly decreasing in xk , i.e. ∂p0
∂xk

< 0

• All pi monotone decreasing in xk , i.e. ∂pi
∂xk
≤ 0

• h is monotone strictly increasing in xk , i.e. ∂h
∂xk

> 0

→ Conditions satisfied for all relaxations presented today.

Extensions exist for multiple hi (x), ∂p0
∂xk

= 0 case [Boyd et. al., 2007]
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Propulsive Efficiency

TV = Pinηengηprop

ηprop = ηiηv

Use actuator disk theory [?]

ηi ≤
2

1 +
√

1 + T
1
2
ρApropV 2

Introduce helper var z

z ≥ 1 +
T

1
2ρApropV 2

2 ≥ ηi + ηiz
1/2

PshaftPin
engine
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