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Main message 

• Seemingly intractable challenges of identification, 
prediction and decision—all under uncertainty—
for large-scale complex systems can be 
overcome if  

 we use approaches that are teleological† and 
structure-exploiting 
 

† of or pertaining to teleology, the philosophical 
doctrine that final causes, design, and purpose 
exist in nature 

 From Ancient Greek τέλος (telos, “purpose”) + 
λόγος (logos, “word, speech, discourse”) 

 (http://en.wiktionary.org) 

 



Multifidelity modeling 

Often have available several physical and/or 
numerical models that describe a system of interest. 

– Models may stem from different resolutions, 
different assumptions, surrogates, approximate 
models, etc. 

 
Multifidelity approaches: How should we best use 
all available models and data in concert to achieve: 

– Better decision-making (optimization, control, 
design, policy-making) 

– Better understanding of modeling limitations 
→ guidance for model development  



Multifidelity modeling: Ingredients 

• Multifidelity model construction 
– Building surrogate, hierarchical or competing models 

→ exploiting structure 
 

• Quantification of uncertainty and model fidelity 
– How good is a model for a given purpose 

 
• Multifidelity model management 

– Which model to use when 
– Balancing computational cost with result quality 
– Convergence guarantees 
– Model-model and model-data fusion 
– Model adaptation 

 



Data-fit models 

Surrogate modeling 

Projection-based reduced models 
• Exploit problem structure 
• Embody underlying physics 

= + = + 

Simplified 
physics models 

= 

= 

from Choi et al. 



Multifidelity modeling: State of the art 

• Focus and progress on deriving surrogates: 
– Projection-based model reduction methods (e.g., Krylov-

based, POD, balanced truncation, reduced basis, etc.) 

– Recent breakthroughs in model reduction for 
parametrically varying and nonlinear systems: 
(Discrete) Empirical Interpolation Method 
(Barrault et al., 2004; Chaturantabut & Sorensen, 2010) 

– Data fit models (e.g., Gaussian process/Kriging) 

• Multifidelity strategies for deterministic optimization 
problems (Alexandrov, Booker, Dennis, Lewis et al., 1997,2001) 

– Otherwise, less focus on how to use surrogates 
(beyond just replacing high-fidelity simulations) 

• Many open questions in quantification of 
uncertainty and multifidelity model management 

 



Multifidelity philosophy: Use cheap models as much 
as possible; use adaptation of low-fidelity models 
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Design variables 𝑥 
Uncertain parameters 𝜉 
Model outputs 𝑦 𝑥, 𝜉  
Statistics of model 𝑠 𝑥  

UQ 
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hi-fi model 

Adaptive corrections: Exploit model local accuracy 
• Computed using occasional recourse to the high-fidelity model 
• Constructed so that surrogate has desirable properties 

(e.g., for convergence) 

Example: Optimization under uncertainty 
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model correction 

fhi 
ghi , hhi 



Multifidelity philosophy: Maintain guarantees of 
convergence with respect to highest-fidelity models 

+ 
+ + + 



Multifidelity philosophy: Use cheap models as much 
as possible 

Control variates: Exploit model correlation 
• Estimate correlation between high- 

and low-fidelity models 
→ reduce high-fidelity samples needed 
 at optimization iterations 

Monte Carlo estimate �̂� 𝑥  for statistics at given design point 
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Control variate estimator of s: 

hi-fi model 
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control 
parameter 

Multifidelity 

Single fidelity 



Multifidelity philosophy: Use high-fidelity models to 
complement rather than supplant low-fidelity results 

Trust models with lower variance 

Combine similar models 

Increasing correlation 

Model fusion: Bayesian update (~Kalman filter) 



Design under uncertainty example: Acoustic horn 

min
𝑏
𝔼 𝑠𝑟 + 𝕍ar 𝑠𝑟  

Equivalent number of  
hi-fi evaluations 

Regular MC 44,343 

Multifidelity MC 6,979 (-84%) 

Decision variables: horn geometry, b 
Uncertainty: wavenumber, wall impedances 
Output of interest: reflection coefficient, sr 

Multifidelity models: 
 Finite element model (35,895 states) 
 Reduced basis model (30 states) 

Multifidelity approach: 
 Control variates 



Multidisciplinary design example: Aircraft wing 
 (with black-box codes) 
Decision variables: wing geometry, structural members 
Disciplines: aerodynamics, structures 
Outputs of interest: weight, lift-to-drag ratio 

Aerodynamics and structures exchange 
pressure loading and deflections, 
requiring an iterative solve for 
each analysis. 

Multifidelity models: 
 Structures:  Nastran (commercial finite element code; MSC) 
  Beam model 
 Aerodynamics: Panair (panel code for inviscid flows; NASA) 
  FRICTION (skin friction and form factors; W. Mason) 
  AVL (vortex-lattice model; M. Drela) 
  Kriging surrogate 



Multidisciplinary design example: Aircraft wing 
Multifidelity approach: 

• Trust region model management 
– Derivative free framework (Conn et al., 2009) 
 

• Adaptive calibration of surrogates 
– Radial basis function calibration to provide fully linear 

models (Wild et al., 2009) 

– Calibration applied to correction function (difference 
between high- and low-fidelity models) 
(Kennedy & O’Hagan, 2001) 

Low-Fidelity Model Nastran Evals. Panair Evals. Time* (days) 

None 7,425 7,425 4.73 

AVL/Beam Model 5,412 5,412 3.45  

Kriging Surrogate 3,232 3,232 2.06 

• Time corresponds to average of 30s per Panair evaluation, 25s per Nastran 
evaluation, and serial analysis of designs within a discipline. 



Exploiting multidisciplinary structure 

Images from: Kenway, Kennedy, and Martins, “A CAD-free approach to 
high-fidelity aerostructural optimization." AIAA 2010-9231 (MAO 2010). 
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Aerodynamics: System 
(aerostructural wing design): 

Targets: deflection 
 configuration 

Response: pressure distribution 

Targets: pressure distribution 
 configuration 

Response: deflection 
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Multidisciplinary feasible (MDF) 

Discipline 1 

Discipline 2 

Discipline 3 

Integrated 
System 

System parameters, x 

Feedback 

Performance 
Feedforward 

• Feasibility requirements: 
– Internals of each discipline are feasible (i.e., PDEs are solved) 
– Feedback loops are all “closed” 

 
• Each system performance estimate requires an iterative solve 

– Costly when not close to optimum 
– Gradient estimate requires full-system solution for each design 

variable 
 

• Multifidelity methods and parallelization only at the 
system level 



Decoupling (Cramer et al., 1984) 

• Individual discipline feasible (IDF): Require r=t at convergence 
• All-at-once (AAO): Require r=t, Ri(x,t)=0 at convergence 

Discipline 1 

Discipline 2 

Discipline 3 
R3(x,t)=0 

Integrated 
System 

System parameters, x; Discipline targets, t 
Performance 

Discipline responses, r 

Discipline 1 

Discipline 2 

Discipline 3 

Integrated 
System 

System parameters, x 

Feedback 

Performance 
Feedforward 



Multifidelity formulations that exploit 
multidisciplinary problem structure 

• MDF formulation 
– Only sees system-level optimization problem 
– Iterative solve for each function evaluation 
– Multifidelity methods and parallelization only at the system 

level 
 

• IDF formulation 
– Formulate a bi-level optimization problem: 

system level and disciplinary level 
– Disciplinary optimizations can be done in parallel 
– Disciplinary optimizations can use tailored optimization 

algorithms (e.g., gradient-based vs. gradient-free) 
– Disciplinary optimizations can exploit discipline-specific 

multifidelity models 
– Uses Alternating Direction Method of Multipliers to manage 

the disciplinary interactions 



Multidisciplinary design example: Aircraft wing 
Multifidelity approach: 

• Trust region model management 
– Derivative free framework (Conn et al., 2009) 
 

• Adaptive calibration of surrogates 
– Radial basis function calibration to provide fully linear 

models (Wild et al., 2009) 

– Calibration applied to correction function (difference 
between high- and low-fidelity models) 
(Kennedy & O’Hagan, 2001) 

• Time corresponds to average of 30s per Panair evaluation, 25s per Nastran 
evaluation, and serial analysis of designs within a discipline. 

Algorithm Low-Fidelity Model Nastran Evals. Panair Evals. Time* (days) 

Parallel IDF None 9,073 7,688 2.67 

Gradient-free MDF None 7,425 7,425 4.73 

Gradient-free MDF AVL/Beam Model 5,412 5,412 3.45 

Gradient-free MDF Kriging Surrogate 3,232 3,232 2.06 



Conclusions 

 
“All models are wrong, but some are useful.”  
 George Box, 1979 
 
• A formal framework for multifidelity modeling can 

– help us understand when our models are useful 
– provide a new way to think about how to use our 

wrong-but-useful models for identification, prediction 
and optimization 

 
• Quantification of uncertainties plays a critical role 

– Many sources of uncertainty in modeling of complex 
systems 

– Model fidelity ↔ decision task at hand 
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