On Unifying Geometric Representations in an MDAO Environment with Application to Aircraft Design

John F. Dannenhoffer, III

Syracuse University

#### **Robert Haimes**

Massachusetts Institute of Technology

7<sup>th</sup> Research Consortium for Multidisciplinary Systems Design Workshop Purdue University

On Unifying Geometric Representations...



- Unified-geometry model
- Introduction to EGADS and OpenCSM
- Unified models for a fighter
- Future directions

## **Unified Geometry Model**

Start with engineering description (design intent)

- feature tree (build script)
- design parameters
- attributes

Generate associated models for various analyses

- mid-surface aerodynamics (MSA)
- outer-mold line (OML)
- built-up element model (BEM)
- solid structure model (SSM)

The Electronic Geometry Aircraft Design System (EGADS) is an open-source geometry interface to OpenCASCADE

- reduces OpenCASCADE's 17,000 methods to about 60 C calls
- supports "bottom-up" construction
  - curve: line, circle, ellipse, parabola, hyperbola, offset, bezier, Bspline
  - surface: plane, spherical, conical, cylindrical, toroidal, revolution, extrusion, offset, bezier, Bspline
  - topological: node, edge, loop, face, shell, body, (model)

### Introduction to EGADS

#### supports "top-down" construction

- primitives: box, cylinder, cone, sphere, torus
- evolved: extrude, revolve, loft, sweep
- applied: fillet, chamfer, hollow/offset
- provides persistent user-defined attributes on all topological entities
- construction is via calls to API

### Introduction to OpenCSM

OpenCSM is an open-source constructive solid modeler

- gives user access to:
  - master model (design parameters and feature tree)
  - boundary representation (BRep composed of volumes, faces, edges, and nodes)
- built upon:
  - EGADS (simple access to OpenCASCADE)
  - CAPRI (vendor-neutral access to *Parasolid*, UniGraphics, Pro/ENGINEER, CatiaV5, SolidWorks, ...)

## **OpenCSM Example**

| External Param       | net                 | er(s     | ):         |                                              |               |  |  |
|----------------------|---------------------|----------|------------|----------------------------------------------|---------------|--|--|
| width                | Ε                   | 1,       | 1]         | 10.00000                                     | 000           |  |  |
| depth                | Ε                   | 1,       | 1]         | 4.00000                                      |               |  |  |
| height               | Ε                   | 1,       | 1]         | 15.00000                                     |               |  |  |
| neckDiam             | Ε                   | 1,       | 1]         | 2.50000                                      |               |  |  |
| neckHeight           | Ε                   | 1,       | 1]         | 3.00000                                      |               |  |  |
| wall                 | Ε                   | 1,       | 1]         | 0.20000                                      |               |  |  |
| filRad1              | Ē                   | 1,       | 1]         | 0.25000                                      |               |  |  |
| filRad2              | C                   | 1,       | 1]         | 0.10000                                      |               |  |  |
| Branch(es):          |                     |          |            |                                              |               |  |  |
| Brch 000001 s        |                     | set      |            | [baseHt] [height-neckHeight]                 |               |  |  |
| Brch_000002          | 2 skbeg             |          | g          | [-width/2] [-depth/4] [0]                    |               |  |  |
| Brch 000003          | 03 .cirarc          |          | arc        | [0] [-depth/2] [0] [+width/2] [-depth/4] [0] |               |  |  |
| Brch_000004          |                     | .linseg  |            | [+width/2] [+depth/4] [0]                    |               |  |  |
| Brch_000005          | h 000005 .cirarc    |          | arc        | [0] [+depth/2] [0] [-width/2] [+depth/4] [0] |               |  |  |
| Brch 000006          | Brch 000006 .linseg |          | seg        | [-width/2] [-depth/4] [0]                    |               |  |  |
| Brch_000007          | )07 skend           |          | d          |                                              |               |  |  |
| Brch 000008          | 000008 extrude      |          | ude        | [0] [0] [baseHt]                             |               |  |  |
| Brch_000009 1        |                     | fillet   |            | [filRad1] [0] [0]                            |               |  |  |
| Brch 000010 se       |                     | set      |            | [holeBot] [height-neckHeight/2]              |               |  |  |
| Brch 000011          | 11 cvlinder         |          | nder       | [0] [0] [baseHt] [0] [0] [height] [neckDiam/ |               |  |  |
| Brch_000012          |                     | cylinder |            | [0] [0] [holeBot] [0] [0] [height+wall] [ned | kDiam/2-wall] |  |  |
| Brch 000013 subtract |                     | ract     | [none] [1] |                                              |               |  |  |
| Brch_000014          |                     | unio     | n          |                                              |               |  |  |
| Brch_000015          |                     | fill     | et         | [filRad2] [0] [0]                            |               |  |  |



# **OpenCSM API**

Load a Master Model

- ocsmLoad(filename, \*modl)
- Interrogate and/or edit the Master Model
  - ocsmInfo(modl, \*nbrch, \*npmtr, \*nbody)
  - ocsmSetBrch(modl, ibrch, actv)
  - ocsmGetPmtr(modl, ipmtr, \*type, \*nrow, \*ncol, name[])
  - ocsmSetValu(modl, ipmtr, irow, icol, defn)
- Execute the feature tree and create a BRep
  - ocsmBuild(modl, buildTo, \*builtTo, \*nbody, bodyList[])
- Interrogate the BRep
  - ocsmGetBody(modl, ibody, ..., \*nnode, \*nedge, \*nface)
  - any of EGADS' or CAPRI's evaluators and inverse evaluators
- Note: API contains fewer than 30 calls

### **OpenCSM** .csm File Description

- ASCII file that contains build recipe that is executed in a stack-like way
- All arguments are MATLAB-like expressions
- Primitives: box, cylinder, cone, sphere, torus
- Grown bodies: extrude, loft, revolve, (sweep)
- User-defined primitives: ellipse, freeform solid, NACA airfoil, ...
  - combines "top-down" with "bottom-up" construction
- Applied features: fillet, chamfer, hollow, offset
- Boolean operators: union, difference, intersection
- Sketches: lines, circular arcs, splines, constraints
- Transformations and Utilities: translate, rotate, scale, patterns, macros

# **OpenCSM** Example

| # design  | parame  | ters  |             |             |            |           |   |
|-----------|---------|-------|-------------|-------------|------------|-----------|---|
| desPmtr   | width   |       | 10.00       |             |            |           |   |
| desPmtr   | depth   |       | 4.00        |             |            |           |   |
| desPmtr   | height  |       | 15.00       |             |            |           |   |
| desPmtr   | neckDi  | am    | 2.50        |             |            |           |   |
| desPmtr   | neckHe  | ight  | 3.00        |             |            |           |   |
| desPmtr   | wall    |       | 0.20        |             |            |           |   |
| desPmtr   | filRad  | 1     | 0.25        |             |            |           |   |
| desPmtr   | filRad  | 2     | 0.10        |             |            |           |   |
|           |         |       |             |             |            |           |   |
| # basic W | oottle  | shape | (filleted)  |             |            |           |   |
| set       | bas     | eHt   | height-nec  | kHeight     |            |           |   |
| skbeg     | -wi     | dth/2 | -depth/4 0  |             |            |           |   |
| cirar     | c 0     |       | -depth/2 0  | +width/2    | -depth/4   | 0         |   |
| linse     | g +wi   | dth/2 | +depth/4 0  |             |            |           |   |
| cirar     | c 0     |       | +depth/2 0  | -width/2    | +depth/4   | 0         |   |
| skend     |         |       |             |             |            |           |   |
| extrude   | 0       | 0     | base        | Ht          |            |           |   |
| fillet    | filRad  | 1 0   | 0           |             |            |           |   |
|           |         |       |             |             |            |           |   |
| # neck w: | ith a h | ole   |             |             |            |           |   |
| set       | holeBo  | t hei | ght-neckHei | ght/2       |            |           |   |
| cylinder  | 0 0     | base  | eHt 00he    | ight :      | neckDiam/2 |           |   |
| cylinder  | 0 0     | hol   | eBot 0 0 he | ight+wall : | neckDiam/2 | -wall     |   |
| subtract  |         |       |             |             |            |           |   |
|           | ,       |       |             |             |            |           |   |
| # join ti | ie neck | τοτι  | ne portle a | na appiy a  | IIIIet at  | the unior | 1 |
| union     |         |       |             |             |            |           |   |

fillet filRad2 0 0



## Sample Configuration — Wing with stores



#### 163 volumes, 715 nodes, 1229 edges, 542 faces

jfdannen@syr.edu ()

On Unifying Geometric Representations...

## Sample Configuration — JMR3



#### 115 volumes, 296 nodes, 462 edges, 194 faces

jfdannen@syr.edu ()

On Unifying Geometric Representations...

### **Overset Surface Grids** — JMR3

#### 76 basic grids, 152 collar grids, 1 global grid



## NASA's Lean-direct Injector Design



#### baseline 10 design variables ifdannen@syr.edu () On Uni

more injectors and vanes/injector

On Unifying Geometric Representations...

July 2012 14 / 24

## **Unified Models for Fighter Configuration**

- Notional description of aircraft
  - (cranked) wing
  - horizontal and vertical tails
  - fuselage
  - integrated propulsion system
- Design parameters
  - wing: series and location/chord/twist at root, break, and tip
  - tails: series and location/chord/twist at root and tip
  - fuselage:
    - OML as lofting of cross-sectional shapes
    - IMLs as lofting of cross-sectional shapes
  - propulsion system:
    - OML as lofting of cross-sectional shapes
    - IML as lofting of cross-sectional shapes

# **Outer-mold line (OML)**



# OML — Build-up Sequence



## Mid-surface aerodynamics (MSA)



## Built-up element model (BEM)



# Solid structure model (SSM)



# Parametric Variation 1 — Untwisted Wing



#### $20^{\circ}$ wing tip twist

no wing tip twist

jfdannen@syr.edu ()

On Unifying Geometric Representations...

### Parametric Variation 2 — Fewer Ribs



#### 8 thin wing ribs

4 thick wing ribs

jfdannen@syr.edu ()

On Unifying Geometric Representations...

July 2012 22 / 24

### **Current Status & Future Directions**

### Current status

- Availability
  - EGADS down-loadable from OpenMDAO's GitHub site
  - OpenCSM in alpha release; beta expected end of summer 2012
- Use
  - integrated with OpenMDAO though GEM/pyRite
  - initial talks to integrate with Sorcer
- Future directions
  - multi-disciplinary and multi-fidelity coupling
  - sensitivities
  - sub-system integration
- Related work
  - automatic generation of overset grid systems

## Acknowledgements

### NASA NRA

- Chris Heath, Technical Monitor
- AFRL Collaboration
  - Ray Kolonay, Technical Contact