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Motivation 
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Development times and 
costs of aerospace 
systems have reached 
unsustainable levels – 
and are getting worse. 

Source: DARPA. Figure 
appeared in Aviation 
Week & Space Tech., 
Nov. 1-8 2011. 

Source: www.boeing.com. 

The Boeing 787 program 
has incurred significant cost 
and schedule overruns due 
to unexpected integration 
issues. 
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Background – Complexity  

• Complexity in system design is an elusive concept… 

– Qualitatively: 
• Nebulous middle ground between order and chaos (Weaver 1948)  

• “I know it when I see it” (Johnson 1997) 

– Quantitatively: 
• Structure-based: source lines of code, number of parts, etc. (Griffin 1997) 

• Process-based: algorithmic complexity, computational complexity, etc. 
(Kolmogorov 1965, Chaitin 1969) 

• Information-based: information entropy, thermodynamic depth (Lloyd 1988) 
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Many metrics.  The usefulness of each depends on context. 



Background – Our context  
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Source: www.inetres.com 

 

• Generally agreed upon properties of a complex system 
– Consist of many parts 

– Parts interact  

– Difficult to model and understand 

• Consider the design of a next generation infantry fighting 
vehicle 
– What are the quantities we truly care about when designing the 

vehicle? 
• Range 

• Acceleration 

• Quiet time duration 

• Armor capabilities 

• Cost 

• Development time 

• … 

 

 

 



Background – Information Entropy 
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Consider a random variable Y  with probability mass function p(y)

The entropy of Y  is defined as :

                                        H (Y )   p
i

 (yi )log p(yi ),

              where y1, y2 , are the values of y such that p(y)  0

Consider a random variable X  with probability density function fX (x)

Differential entropy of X  is defined as :

                                    h(X)   fX (x)log fX (x)dx

Examples :

                                       h( (, 2 )) 
1

2
ln(2e 2 )

                                           h(U[a,b])  ln(b  a)

                                        h(T (a,b,c)) 
1

2
  ln

b  a

2










System Complexity   

 

• Captures qualitative aspects of system complexity 
– notion of emergent behavior 

– Lack of understanding  

• Can be quantitatively measured 
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Proposed Definition: System Complexity 

The potential of a system to exhibit unexpected behavior in 

the quantities of interest. 

Proposed Metric: System Complexity 

 

Let ( ) be the probability density function of a 

quantity of interest. Then 

       ( ) exp ( ) ln ( ) exp ( )

is a metric of system complexity as defined above.
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Complexity Metric 

• For the case where we have perfect 

knowledge, complexity 

 

 

 

• For all other cases, 

• For the case of a uniform random variable   
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Total UQ for Computer Models  

• Parametric uncertainty – refers to uncertain 
inputs or parameters of a model 

 

• Parametric variability – uncontrolled or 
unspecified conditions in inputs or parameters 

 

• Model discrepancy – no model is perfect… 

 

• Code uncertainty – uncertainty associated with 
not knowing the output of a computer model 
given any particular input configuration until the 
code is run 
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Model Discrepancy 

10 

 

• We must quantify model discrepancy 

• From Kennedy and O’Hagan, 2001: “No model is perfect. Even 

if there is no parameter uncertainty, so that we know the true values of all 

the inputs required to make a particular prediction of the process being 

modeled, the predicted value will not equal the true value of the process. 

The discrepancy is model inadequacy.” 

 

 

 

 

 

 

 

 

Model Fidelity        (Model Discrepancy)-1 

) ( )(q g  x x

Quantity of interest Simulator 

Model Discrepancy 



Code Uncertainty 
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• Code uncertainty – uncertainty associated with not 

knowing the output of a computer model given any 

particular configuration until the code is run 

) ( )(q  x x

Quantity of interest 

Emulator 

Model Discrepancy 

Mean surface 

+/- 2 Standard deviations 

) ~ (m( ), k( , ))

m( ) is a mean func

Gaussian Proce

tion

k( , ) is a covariance kernel

ss Emulator

( 



x x x x

x

x x

Posterior Emulator Sample 



Complexity Metric Estimation 

Must incorporate all sources of uncertainty 
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1
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Identification of Key Contributors to Complexity 
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Complex System Design 

Source: www.boeing.com. 

Complex System Analysis 

Global 

climate  

change 

Source: blog.cunysustainablecities.org. 

Coupled Aviation-Environmental System 

Source: www.inetres.com 

 

Source: www.airliners.net 

Variance-based approach (Homma 1996) 

Cathode Anode 

Space Thruster for  

Orbital Repositioning 

Satellite 
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Sensitivity Indices 
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ˆ ˆ( | ) ([ )]| ,
ˆ )

ˆ ( | )
( i
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


   

For parametric uncertainty and variability 

Expected complexity 

remaining once factor i 

is known  
Initial complexity 

conditioned on 
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ˆ )[ ( ]i i 

Average over the emulator samples to obtain sensitivity indices 



Sensitivity Indices 
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For model discrepancy Complexity remaining if 

the model is assumed 

to be perfect Initial complexity 

MD
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Demonstration 1 
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• Estimate the complexity of an IFV design           
with respect to range as the quantity of         
interest 

• Parameters:  
– Usable fuel ~ U[360,400] liters (parametric uncertainty) 

– Average velocity ~ U[45,55] kph (parametric variability) 

• Model discrepancy 

 

 

 

• Code uncertainty 
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Results – Quantity of Interest Densities 
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Quantity of interest distributions from different 

emulator samples without model inadequacy 

Quantity of interest 

distributions from 

different emulator 

samples with model 

inadequacy 



Results 
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( ) 104 kmC Q 

AV 0.46 

F 0.44 

MD 0.15 

0.16 
CU

Complexity 

 

 

Average velocity sensitivity 

 

Usable fuel sensitivity 

 

Model discrepancy sensitivity 

 

Code uncertainty 

 

 

 

Allocate resources to learning more about the target 

velocity and fuel level 



Demonstration 2 

• Notional design process for a hybrid IFV 

• Purpose is to demonstrate at a high level 

the role of sensitivity analysis and 

feedback  

• Primarily the work of John Deyst and 

Chelsea He 
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Approach 
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• Specify the quantities of interest  vehicle requirements   

• Specify the factors that influence the quantities of interest  state 

variables 

• Decompose the vehicle design in terms of systems, subsystems, and 

components, and identify linking variables 

• Use available vehicle design models to compute the quantities of interest 

• Compute the probability of failure with respect to the quantities of interest 

• Estimate complexity in the quantities of interest using Monte Carlo 

simulation 

• Perform sensitivity analysis to identify sources of complexity 

• Perform resource allocation to reduce complexity 

• Iterate until feasible design is achieved that exhibits acceptable complexity 

in the quantities of interest 



Requirements and System Decomposition 
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System Factors 
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System Quantities of Interest 
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Iteration 1 
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• Initialize values and standard deviations 

• Identify Wfuel and Eb as targets for resource allocation 



Iteration 2 
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• Reduce std. dev. of Wfuel and Eb by 75%; all others by 50% 

• Identify We and Pes as targets for resource allocation 



Iteration 3 

26 

• Reduce std. dev. of We and Pes by 75%; all others by 50% 

• Identify w/f for resource allocation 



Iteration 4 
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• Reduce std. dev. of w/f by 75%; all others by 50% 



The Importance of Feedback 
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Broken Battery Feedback Results 
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Relevance of the Example 
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Source: www.boeing.com. 

Source: blog.seattlepi.com. 



Conclusions 

• Summary 
– Proposed an information-theoretic metric of complexity 

– Developed a set of sensitivity indices as indicators of key sources of 
complexity 

– Calculated the metric of complexity and apportioned the complexity to key 
sources for an IFV application 

– Demonstrated the importance of feedback in design 

 

• Conclusions 
– For simulation-based design and analysis, all sources of uncertainty must be 

included 

– Data regarding model discrepancy is critical 

– Sensitivity analysis can be used to allocate resources aimed at reducing 
large uncertainties in quantities of interest 

– The quantification and evolution of information in system design is essential.  

– System design and analysis is a problem of information management / 
uncertainty control 

 

• Future work 
– Information fusion (models, sensors, experts…) 

– Compositional UQ 
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Bringing high fidelity forward 
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Source: www.time-az.com. 

• Aerospace vehicle design typically 

involves custom parts for nearly 

every aspect of the system 

• Design options include: 

• Use high fidelity tools to 

analyze 

• Start with low fidelity tools 

and identify where fidelity 

increases are required 

• Deal with emergent behavior 

as it emerges 

• Reuse of parts/components enables high fidelity results from “low” fidelity tools 

• Sacrifice optimality for reduced complexity designs 

• Possibly at lower cost and faster development times 

• Recall visualization discussion 

• Visualizing high dimensional design parameter spaces is difficult 

• Lots of room for possibly undetected emergent behavior 

• Foundry-like approach can reduce the design space substantially 

“The most important development in aviation in 2011” -Time 
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Big Picture 

34 


