
Joaquim R. R. A. Martins
Graeme Kennedy • Gaetan Kenway • John Hwang

Multidisciplinary Design Optimization Laboratory
http://mdolab.engin.umich.edu

High-Fidelity Optimal Aeroelastic
Tailoring of Highly Flexible Wings

MDO Consortium Workshop, Purdue University — July 19, 2012

.. and some other stuff

http://mdolab.engin.umich.edu
http://mdolab.engin.umich.edu

x

(0)
0 , x̂

(0)
1···N , y

t,(0)
x̂

(0)
0i , x

(0)
i

x

⇤
0

0, 2!1:
System

Optimization
1 : x0, x̂1···N , y

t 1.1 : ytj 6=i 1.2 : x0, x̂i, y
t

2 : f0, c0

1:
System

Functions

x

⇤
i

1.0, 1.3!1.1:
Optimization i

1.1 : x̂0i, xi 1.2 : x̂0i, xi

y

⇤
i

1.1:
Analysis i

1.2 : yi

2 : J⇤
i 1.3 : fi, ci, Ji

1.2:
Discipline i

Functions

What has happened since last year?
• XDSM paper has appeared:

A. B. Lambe and J. R. R. A. Martins. “Extensions to the design structure
matrix for the description of multidisciplinary design, analysis, and
optimization processes”. Structural and Multidisciplinary Optimization,
46:273–284, 2012. doi: 10.1007/s00158-012-0763-y.

• MDO survey was submitted to AIAAJ, and is now in Revision 1. Draft
available at: http://mdolab.engin.umich.edu/publications

• New paper on computing derivatives for coupled systems; presented at
the AIAA SDM

• New aerostructural design optimization results

• New CAD-free geometry engine in development

The linearized residual equations (41) provide the means for computing the total sensitivity matrix dy/ dx, by
rewriting those equations as

@R

@y

dy

dx

= �@R

@x

. (42)

Substituting this result into the total derivative equation (40), we obtain

df

dx

=

@F

@x

� @F

@y

� dy

dxz }| {
@R

@y

��1

@R

@x

.

| {z }

(43)

n

f

> n

x

n

x

> n

f

df

dx

=

@F

@x

� @F

@y

@R

@y

��1

@R

@x

= – = –

Direct method n

f

> n

x

n

x

> n

f

df

dx

=

@F

@x

+

@F

@y

dy

dx

= + = +

� @R

@y

dy

dx

=
@R

@x

– = – =

Adjoint method n

f

> n

x

n

x

> n

f

df

dx

=

@F

@x

+

df

dr

@R

@x

= + = +

�

@R

@y

�
T

df

dr

�
T

=

@F

@y

�
T – = – =

Figure 9: Block matrix diagrams illustrating the direct and adjoint methods. The matrices in blue contain partial
derivatives and are relatively cheap to compute. The matrices in red contain total derivatives that are computed by
solving linear systems (the third and fifth rows). In both cases, it is assumed that n

y

� n

x

, n

f

.

The inverse of the square Jacobian matrix @R/@y is not necessarily explicitly calculated. However, we use the
inverse to denote the fact that this matrix needs to be solved as a linear system with some right-hand-side vector.

Eq. (43) shows that there are two ways of obtaining the total derivative matrix dy/ dx, depending on which right-
hand side is chosen for the solution of the linear system. Fig. 9 shows the sizes of the matrices in Eq. (43), which
depend on the shape of df/ dx. The diagrams in Fig. 9 illustrate why the direct method is preferable when n

f

> n

x

and the adjoint method is more efficient when n

x

< n

f

. This is the same fundamental difference that we observed
between the forward and reverse forms of the unifying chain rule.

16 of 26

American Institute of Aeronautics and Astronautics

http://mdolab.engin.umich.edu/publications
http://mdolab.engin.umich.edu/publications

What
motivates

MDO?

4

• Highly-flexible high aspect ratio wings

• Unknown design space and interdisciplinary trade-offs

• High risk

The next generation of aircraft demands
even more of the design process

[NASA]

5

Why you should not trust an
aerodynamicist (even a brilliant one) to
make design decisions

[NASA]

5

Why you should not trust an
aerodynamicist (even a brilliant one) to
make design decisions

[DLR]

6

Configurations 50 flight points
100 mass cases
 10 configurations
 5 maneuvers
 20 gusts
 4 control laws

 20 million analyses

Use engineering
experience from
conventional designs

 100,000 analyses

!"##$%&'()*$&*+&#,-&$
.,+&/0)&1

!"#$%&'()*%"#+,
clean

airbrakes out

high lift

!"#$%&'()*%"#+,
clean

airbrakes deployed

high lift

2343334333'(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

7334333$'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*,&"+/&'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

@$2343334333 '(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

@7334333'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*&"+&/'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

5'44/2.+%&# .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

5'44/$4%&3* .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

!"##$%&'()*$&*+&#,-&$
.,+&/0)&1

!"#$%&'()*%"#+,
clean

airbrakes out

high lift

!"#$%&'()*%"#+,
clean

airbrakes deployed

high lift

!"#$%&'()*%"#+,
clean

airbrakes out

high lift

!"#$%&'()*%"#+,
clean

airbrakes deployed

high lift

2343334333'(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

7334333$'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*,&"+/&'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

@$2343334333 '(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

@7334333'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*&"+&/'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

2343334333'(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

7334333$'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*,&"+/&'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

@$2343334333 '(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

@7334333'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*&"+&/'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

5'44/2.+%&# .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

5'44/$4%&3* .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

5'44/2.+%&# .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

5'44/$4%&3* .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

�

7%8.9)!!'()*./8'4*%92%+!%14%#)(:/8)#.'6.(%#&/)%(!()$*/+%8'4)*%"#+
 A!#B$6:&$&C"06(,*'D

�

;.#.()*%"#/"$/+*)*%!/</2:#)8%!/).("2:#)8%!/2)*)9=)+./(.4:%#&/"#/
3%&39$%2.4%*:/*""4+//A!#B$6:&$%060E0'&D

F('(,*1$G()(60#$H(/./096$F('(,*$$

!"##$%&'()*$&*+&#,-&$
.,+&/0)&1

!"#$%&'()*%"#+,
clean

airbrakes out

high lift

!"#$%&'()*%"#+,
clean

airbrakes deployed

high lift

2343334333'(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

7334333$'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*,&"+/&'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

@$2343334333 '(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

@7334333'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*&"+&/'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

5'44/2.+%&# .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

5'44/$4%&3* .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

!"##$%&'()*$&*+&#,-&$
.,+&/0)&1

!"#$%&'()*%"#+,
clean

airbrakes out

high lift

!"#$%&'()*%"#+,
clean

airbrakes deployed

high lift

!"#$%&'()*%"#+,
clean

airbrakes out

high lift

!"#$%&'()*%"#+,
clean

airbrakes deployed

high lift

2343334333'(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

7334333$'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*,&"+/&'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

@$2343334333 '(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

@7334333'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*&"+&/'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

2343334333'(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

7334333$'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*,&"+/&'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

@$2343334333 '(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

@7334333'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*&"+&/'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

5'44/2.+%&# .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

5'44/$4%&3* .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

5'44/2.+%&# .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

5'44/$4%&3* .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

�

7%8.9)!!'()*./8'4*%92%+!%14%#)(:/8)#.'6.(%#&/)%(!()$*/+%8'4)*%"#+
 A!#B$6:&$&C"06(,*'D

�

;.#.()*%"#/"$/+*)*%!/</2:#)8%!/).("2:#)8%!/2)*)9=)+./(.4:%#&/"#/
3%&39$%2.4%*:/*""4+//A!#B$6:&$%060E0'&D

F('(,*1$G()(60#$H(/./096$F('(,*$$

!"##$%&'()*$&*+&#,-&$
.,+&/0)&1

!"#$%&'()*%"#+,
clean

airbrakes out

high lift

!"#$%&'()*%"#+,
clean

airbrakes deployed

high lift

2343334333'(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

7334333$'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*,&"+/&'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

@$2343334333 '(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

@7334333'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*&"+&/'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

5'44/2.+%&# .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

5'44/$4%&3* .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

!"##$%&'()*$&*+&#,-&$
.,+&/0)&1

!"#$%&'()*%"#+,
clean

airbrakes out

high lift

!"#$%&'()*%"#+,
clean

airbrakes deployed

high lift

!"#$%&'()*%"#+,
clean

airbrakes out

high lift

!"#$%&'()*%"#+,
clean

airbrakes deployed

high lift

2343334333'(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

7334333$'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*,&"+/&'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

@$2343334333 '(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

@7334333'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*&"+&/'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

2343334333'(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

7334333$'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*,&"+/&'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

@$2343334333 '(5"#06(,*'

-#&%#..(%#&/.01.(%.#!.
$"(."//&*6 !"#$%&'()*%"#+

)#2/*.!3#"4"&%.+

@7334333'(5"#06(,*'

83$$$9#():6 -,(*6'
733 50'' .0'&'
73 0;.$.,*9()"/06(,*'
8$$$50*&"+&/'
23$$$)"'6' <)/0%(&*6 #&*)6:'=
>$$$.,*6/,# #0?'

5'44/2.+%&# .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

5'44/$4%&3* .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

5'44/2.+%&# .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

5'44/$4%&3* .#6.4"1.
!"6.()&., CFD mostly done

near cruise point

attached flow

separated flow,
unsteady

�

7%8.9)!!'()*./8'4*%92%+!%14%#)(:/8)#.'6.(%#&/)%(!()$*/+%8'4)*%"#+
 A!#B$6:&$&C"06(,*'D

�

;.#.()*%"#/"$/+*)*%!/</2:#)8%!/).("2:#)8%!/2)*)9=)+./(.4:%#&/"#/
3%&39$%2.4%*:/*""4+//A!#B$6:&$%060E0'&D

F('(,*1$G()(60#$H(/./096$F('(,*$$Next generation MDO will be
computationally demanding...
Full flight envelope

7

...but next generation computing will be
much more powerful...

7

... except Moore’s law requires
efficient parallel computing

...but next generation computing will be
much more powerful...

• High-fidelity needed for:

‣ Compressible flow
‣ Viscous drag
‣ Accurate failure analysis
‣ Nonlinear coupling

• As high-fidelity analyses mature, the question becomes: How do we use
these analyses to design a system?

• How do we utilize the full potential of a new technology?

• Large numbers of design variables and constraints required to take
advantage of high-fidelity analyses

Why we need high-fidelity MDO, and why
it is so challenging

1. Multiple highly coupled systems

2. High computational cost of analysis

3. Large numbers of design variables
and constraints

4. Relevant problem formulation

Some of the main challenges are:

10

Gradient-based optimization is our only hope
to explore large-dimensionality design spaces

10

Gradient-based optimization is our only hope
to explore large-dimensionality design spaces

10

Gradient-based optimization is our only hope
to explore large-dimensionality design spaces

10

Gradient-based optimization is our only hope
to explore large-dimensionality design spaces

Why sequential optimization is not MDO:
A wing design example

Aerodynamics: Panel code computes induced drag. Variables: wing twist and angle of
attack
Structures: Beam finite-element model of the spar that computes the displacements
and stresses. Variables: element thicknesses

11

�0, t0 w0, u0

�⇤, t⇤ Optimization

0
7

6!1
1

5 : �, t 2 : � 3 : t

6 : R,� � �y Functions
6

5

MDA

1
5

4!2
2

2 : u

5 : w 4 : w Aerodynamics

2

3
3 : w

5 : u 4 : u Structures

3
4

�0, t0

�⇤, t⇤ Iterator

0

7!1
1,3

8

� Optimization

1

3!2
2,4

�

L/D Aerodynamics

2
3

F

t Optimization

4

6!5
5

7
t

u W,� � �y Structures

5
6

MDOSequential

[Chittick and Martins, Structural and Multidisciplinary Optimization, 2008]

−10 −8 −6 −4 −2 0 2
0

0.05

0.1

0.15

0.2

0.25

3000 3000 3000

4000
4000 4000

5000
5000 5000

6000
6000 6000

7000

Jig Twist (degrees)

T
h
ic

kn
e
ss

 (
m

)

Range (km)

Sequential

MDO

Stress constraint

Aerodynamic optima

Watch sequential optimization get
stuck in a rut

http://mdolab.engin.umich.edu/content/asymmetric-suboptimization-approach-aerostructural-optimization-0
http://mdolab.engin.umich.edu/content/asymmetric-suboptimization-approach-aerostructural-optimization-0
http://mdolab.engin.umich.edu/content/asymmetric-suboptimization-approach-aerostructural-optimization-0

Computing derivatives:
a short review

14

One Chain to Rule Them All

To relate these concepts to the usual conventions in sensitivity analysis, we now separate the subsets in v into
independent variables x, state variables y and quantities of interest, f . Note that these do not necessary correspond
exactly to the component inputs, intermediate variables and outputs, respectively. Using this notation, we can write
the residual equations as,

r = R(x,y(x)) = 0 (9)

where y(x) denotes the fact that y depends implicitly on x through the solution of the residual equations (9). It is the
solution of these equations that completely determines y for a given x. The functions of interest (usually included in
the set of component outputs) also have the same type of variable dependence in the general case, i.e.,

f = F(x,y(x)). (10)

When we compute the values f , we assume that the state variables y have already been determined by the solution of
the residual equations (9). The dependencies involved in the computation of the functions of interest are represented
in Figure 3. For the purposes of this paper, we are ultimately interested in the total derivatives of quantities f with
respect to x.

x

R(x,y) = 0 F (x,y) f

x 2 Rn

x

y 2 Rn

y

r 2 Rn

y

f 2 Rn

f

Figure 3: Definition of the variables involved at the solver level, showing the dependency of the quantity of interest on
the design variables, both directly and through the residual equations that determine the system states

B. A Unified Framework

In this section, we present the mathematical framework that unifies the methods for computing total derivatives. The
methods differ in the extent to which they decompose a system, but they all come from a basic principle: a generalized
chain rule.

To arrive at this form of chain rule, we start from the sequence of variables (v1, . . . , vn), whose values are functions
of earlier variables, v

i

= V

i

(v1, . . . , vi�1). For brevity, V
i

(v1, . . . , vi�1) is written as v

i

(·). We define a partial
derivative, @V

i

/@v

j

, of a function V

i

with respect to a variable v

j

as

@V

i

@v

j

=
V

i

(v1, . . . , vj�1, vj + h, v

j+1, . . . , vi�1)� V

i

(·)
h

. (11)

The total variation �v

k

, due to a perturbation �v

j

can be computed by using the sum of partial derivatives,

�v

k

=
k�1X

l=j

@V

k

@v

l

�v

l

(12)

where all intermediate �v’s between j and k are computed and used. The total derivative is defined as,

dv
i

dv
j

=
�v

i

�v

j

, (13)

Using the two equations above, we can derive the following equation:

dv
i

dv
j

= �

ij

+
i�1X

k=j

@V

i

@v

k

dv
k

dv
j

, (14)

which expresses a total derivative in terms of the other total derivatives and the Jacobian of partial derivatives. Equa-
tion (14) is represents the chain rule for a system whose variables are v.

6 of 26

American Institute of Aeronautics and Astronautics

To arrive at this form of chain rule, we start from the sequence of variables (v1, . . . , vn), whose values are functions
of earlier variables, v

i

= V

i

(v1, . . . , vi�1). For brevity, V
i

(v1, . . . , vi�1) is written as v

i

(·). We define a partial
derivative, @V

i

/@v

j

, of a function V

i

with respect to a variable v

j

as

@V

i

@v

j

=
V

i

(v1, . . . , vj�1, vj + h, v

j+1, . . . , vi�1)� V

i

(·)
h

. (11)

The total variation �v

k

, due to a perturbation �v

j

can be computed by using the sum of partial derivatives,

�v

k

=
k�1X

l=j

@V

k

@v

l

�v

l

(12)

where all intermediate �v’s between j and k are computed and used. The total derivative is defined as,

dv
i

dv
j

=
�v

i

�v

j

, (13)

Using the two equations above, we can derive the following equation:

dv
i

dv
j

= �

ij

+
i�1X

k=j

@V

i

@v

k

dv
k

dv
j

, (14)

which expresses a total derivative in terms of the other total derivatives and the Jacobian of partial derivatives. Equa-
tion (14) is represents the chain rule for a system whose variables are v.

To get a better understanding of the structure of the chain rule (14), and the options for performing the computation
it represents, we now write it in matrix form. We can write the partial derivatives of the elementary functions V

i

with
respect to v

i

as the square n

t

⇥ n

t

Jacobian matrix,

DV =
@V

i

@v

j

=

2

6666664

0 · · ·
@V2
@v1

0 · · ·
@V3
@v1

@V3
@v2

0 · · ·
...

...
.

@V

n

t

@v1

@V

n

t

@v2
· · · @V

n

t

@v

n

t

�1
0

3

7777775
, (15)

where D is a differential operator. The total derivatives of the variables v
i

form another Jacobian matrix of the same
size that has a unit diagonal,

Dv =
dv

i

dv
j

=

2

6666664

1 0 · · ·
dv2
dv1

1 0 · · ·
dv3
dv1

dv3
@v2

1 0 · · ·
...

...
.

dv
n

t

dv1

dv
n

t

dv2
· · · dv

n

t

dv
n

t

�1
1

3

7777775
. (16)

Both of these matrices are lower triangular matrices, due to our assumption that we have unrolled all the loops.
Using this notation, the chain rule (14) can be writen as

Dv = I +DV Dv. (17)

Rearranging this, we obtain,
(I �DV)Dv = I. (18)

where all these matrices are square, with size n ⇥ n. The matrix (I � DV) can be formed by finding the partial
derivatives, and then we can solve for the total derivatives Dv. Since (I �DV) and Dv are inverses of each other,
we can further rearrange it to obtain the transposed system:

(I �DV)T Dv

T = I. (19)

7 of 26

American Institute of Aeronautics and Astronautics

We want the total derivative

To arrive at this form of chain rule, we start from the sequence of variables (v1, . . . , vn), whose values are functions
of earlier variables, v

i

= V

i

(v1, . . . , vi�1). For brevity, V
i

(v1, . . . , vi�1) is written as v

i

(·). We define a partial
derivative, @V

i

/@v

j

, of a function V

i

with respect to a variable v

j

as

@V

i

@v

j

=
V

i

(v1, . . . , vj�1, vj + h, v

j+1, . . . , vi�1)� V

i

(·)
h

. (11)

The total variation �v

k

, due to a perturbation �v

j

can be computed by using the sum of partial derivatives,

�v

k

=
k�1X

l=j

@V

k

@v

l

�v

l

(12)

where all intermediate �v’s between j and k are computed and used. The total derivative is defined as,

dv
i

dv
j

=
�v

i

�v

j

, (13)

Using the two equations above, we can derive the following equation:

dv
i

dv
j

= �

ij

+
i�1X

k=j

@V

i

@v

k

dv
k

dv
j

, (14)

which expresses a total derivative in terms of the other total derivatives and the Jacobian of partial derivatives. Equa-
tion (14) is represents the chain rule for a system whose variables are v.

To get a better understanding of the structure of the chain rule (14), and the options for performing the computation
it represents, we now write it in matrix form. We can write the partial derivatives of the elementary functions V

i

with
respect to v

i

as the square n

t

⇥ n

t

Jacobian matrix,

DV =
@V

i

@v

j

=

2

6666664

0 · · ·
@V2
@v1

0 · · ·
@V3
@v1

@V3
@v2

0 · · ·
...

...
.

@V

n

t

@v1

@V

n

t

@v2
· · · @V

n

t

@v

n

t

�1
0

3

7777775
, (15)

where D is a differential operator. The total derivatives of the variables v
i

form another Jacobian matrix of the same
size that has a unit diagonal,

Dv =
dv

i

dv
j

=

2

6666664

1 0 · · ·
dv2
dv1

1 0 · · ·
dv3
dv1

dv3
@v2

1 0 · · ·
...

...
.

dv
n

t

dv1

dv
n

t

dv2
· · · dv

n

t

dv
n

t

�1
1

3

7777775
. (16)

Both of these matrices are lower triangular matrices, due to our assumption that we have unrolled all the loops.
Using this notation, the chain rule (14) can be writen as

Dv = I +DV Dv. (17)

Rearranging this, we obtain,
(I �DV)Dv = I. (18)

where all these matrices are square, with size n ⇥ n. The matrix (I � DV) can be formed by finding the partial
derivatives, and then we can solve for the total derivatives Dv. Since (I �DV) and Dv are inverses of each other,
we can further rearrange it to obtain the transposed system:

(I �DV)T Dv

T = I. (19)

7 of 26

American Institute of Aeronautics and Astronautics

The total variation of a variable with respect to another is

This yields the chain rule

how AD is implemented, it will become clear that this assumption is not restrictive, as programs iterate the chain rule
(and thus the total derivatives) together with the program variables, converging to the correct total derivatives.

In the AD perspective, the independent variables x and the quantities of interest f are assumed to be in the vector
of variables v. Typically, the design variables are among the v’s with lower indices, and the quantities of interest are
among the last quantities. Thus, to make clear the connection to the other derivative computation methods, we group
these variables as follows,

v = [v1, . . . , vn
x| {z }

x

, . . . , v

j

, . . . , v

i

, . . . , v(n�n

f

), . . . , vn| {z }
f

]T . (21)

r
2

r
1

f

y

x

r

y
2

y
1

v
1

v
2

v
3

v
4

.

.

.

v
n

v = [v1, . . . , vn
x| {z }

x

, . . . , v

j

, . . . , v

i

, . . . , v(n�n

f

), . . . , vn| {z }
f

]T

Figure 4: Decomposition level for algorithmic differentiation: the variables v are all the variables assigned in the
computer program.

The chain rule 14 introduced in the previous section was

dv
i

dv
j

= �

ij

+
i�1X

k=j

@V

i

@v

k

dv
k

dv
j

, (22)

where the V represent explicit functions, each defined by a single line in the computer program. The partial derivatives,
@V

i

/@v

k

can be automatically differentiated symbolically by applying another chain rule within the function defined
by the respective line.

The chain rule (22) can be solved in two ways. In the forward mode, we choose one v

j

and keep j fixed. Then
we work our way forward in the index i = 1, 2, . . . , n until we get the desired total derivative. In the reverse mode,
on the other hand, we fix v

i

(the quantity we want to differentiate) and work our way backward in the index j =
n, n � 1, . . . , 1 all the way to the independent variables. We now describe these two modes in more detail, and
compare the computational costs associated with each of them.

1. Forward Mode

To get a better understanding of the structure of the chain rule (14), and the options for performing that computation,
we now write it in the matrix form (18):

(I �D

V

)D
v

= I)

8 of 26

American Institute of Aeronautics and Astronautics

15

Chain Rule in Matrix Form
To get a better understanding of the structure of the chain rule (14), and the options for performing the computation

it represents, we now write it in matrix form. We can write the partial derivatives of the elementary functions V
i

with
respect to v

i

as the square n⇥ n Jacobian matrix,

D

V

=
@V

i

@v

j

=

2

6666664

0 · · ·
@V2
@v1

0 · · ·
@V3
@v1

@V3
@v2

0 · · ·
...

...
.

@V

n

@v1

@V

n

@v2
· · · @V

n

@v

n�1
0

3

7777775
, (15)

where D is a differential operator. The total derivatives of the variables v
i

form another Jacobian matrix of the same
size that has a unit diagonal,

D

v

=
dv

i

dv
j

=

2

6666664

1 0 · · ·
dv2
dv1

1 0 · · ·
dv3
dv1

dv3
@v2

1 0 · · ·
...

...
.

dv
n

dv1
dv

n

dv2
· · · dv

n

dv
n�1

1

3

7777775
. (16)

Both of these matrices are lower triangular matrices, due to our assumption that we have unrolled all the loops.
Using this notation, the chain rule (14) can be writen as

D

v

= I +D

V

D

v

. (17)

Rearranging this, we obtain,
(I �D

V

)D
v

= I. (18)

where all these matrices are square, with size n ⇥ n. The matrix (I � D

V

) can be formed by finding the partial
derivatives, and then we can solve for the total derivatives D

v

. Since (I �D

V

) and D

v

are inverses of each other,
we can further rearrange it to obtain the transposed system:

(I �D

V

)T D

T

v

= I. (19)

This leads to the following symmetric relationship:

(I �D

V

)D
v

= I = (I �D

V

)T D

T

v

(20)

We call the left and right hand sides of this equation the forward and reverse chain rule equations, respectively. As
we will see throughout this paper: All methods for derivative computation can be derived from one of the forms of
this chain rule (20) by changing what we mean by “variables”, which can be seen as a level of decomposition. The
various levels of decomposition were shown in Figure 1 and summarized later, in Table 1.

C. Algorithmic Differentiation

Algorithmic differentiation (AD) — also known as computational differentiation or automatic differentiation — is a
well known method based on the systematic application of the differentiation chain rule to computer programs [30, 31].
Although this approach is as accurate as an analytic method, it is potentially much easier to implement since the
implementation can be done automatically. To explain AD, we start by describing the basic theory and how it relates
to the chain rule identity (20) introduced in the previous section. We then explain how the method is implemented in
practice, and show an example.

From the AD perspective, the variables v in the chain rule (20) are all the variables assigned in the computer
program, and AD applies the chain rule for every single line in the program. The computer program thus can be
considered a sequence of explicit functions V

i

, where i = 1, . . . , n. In its simplest form, each function in this sequence
depends only on the inputs and the functions that have been computed earlier in the sequence, as expressed in the
functional dependence (5).

Again, for this assumption to hold, we assume that all the loops in the program are unrolled, and therefore no
variables are overwritten and each variable only depends on earlier variables in the sequence. Later, when we explain
how AD is implemented, it will become clear that this assumption is not restrictive, as programs iterate the chain rule
(and thus the total derivatives) together with the program variables, converging to the correct total derivatives.

7 of 26

American Institute of Aeronautics and Astronautics

To get a better understanding of the structure of the chain rule (14), and the options for performing the computation
it represents, we now write it in matrix form. We can write the partial derivatives of the elementary functions V

i

with
respect to v

i

as the square n⇥ n Jacobian matrix,

D

V

=
@V

i

@v

j

=

2

6666664

0 · · ·
@V2
@v1

0 · · ·
@V3
@v1

@V3
@v2

0 · · ·
...

...
.

@V

n

@v1

@V

n

@v2
· · · @V

n

@v

n�1
0

3

7777775
, (15)

where D is a differential operator. The total derivatives of the variables v
i

form another Jacobian matrix of the same
size that has a unit diagonal,

D

v

=
dv

i

dv
j

=

2

6666664

1 0 · · ·
dv2
dv1

1 0 · · ·
dv3
dv1

dv3
@v2

1 0 · · ·
...

...
.

dv
n

dv1
dv

n

dv2
· · · dv

n

dv
n�1

1

3

7777775
. (16)

Both of these matrices are lower triangular matrices, due to our assumption that we have unrolled all the loops.
Using this notation, the chain rule (14) can be writen as

D

v

= I +D

V

D

v

. (17)

Rearranging this, we obtain,
(I �D

V

)D
v

= I. (18)

where all these matrices are square, with size n ⇥ n. The matrix (I � D

V

) can be formed by finding the partial
derivatives, and then we can solve for the total derivatives D

v

. Since (I �D

V

) and D

v

are inverses of each other,
we can further rearrange it to obtain the transposed system:

(I �D

V

)T D

T

v

= I. (19)

This leads to the following symmetric relationship:

(I �D

V

)D
v

= I = (I �D

V

)T D

T

v

(20)

We call the left and right hand sides of this equation the forward and reverse chain rule equations, respectively. As
we will see throughout this paper: All methods for derivative computation can be derived from one of the forms of
this chain rule (20) by changing what we mean by “variables”, which can be seen as a level of decomposition. The
various levels of decomposition were shown in Figure 1 and summarized later, in Table 1.

C. Algorithmic Differentiation

Algorithmic differentiation (AD) — also known as computational differentiation or automatic differentiation — is a
well known method based on the systematic application of the differentiation chain rule to computer programs [30, 31].
Although this approach is as accurate as an analytic method, it is potentially much easier to implement since the
implementation can be done automatically. To explain AD, we start by describing the basic theory and how it relates
to the chain rule identity (20) introduced in the previous section. We then explain how the method is implemented in
practice, and show an example.

From the AD perspective, the variables v in the chain rule (20) are all the variables assigned in the computer
program, and AD applies the chain rule for every single line in the program. The computer program thus can be
considered a sequence of explicit functions V

i

, where i = 1, . . . , n. In its simplest form, each function in this sequence
depends only on the inputs and the functions that have been computed earlier in the sequence, as expressed in the
functional dependence (5).

Again, for this assumption to hold, we assume that all the loops in the program are unrolled, and therefore no
variables are overwritten and each variable only depends on earlier variables in the sequence. Later, when we explain
how AD is implemented, it will become clear that this assumption is not restrictive, as programs iterate the chain rule
(and thus the total derivatives) together with the program variables, converging to the correct total derivatives.

7 of 26

American Institute of Aeronautics and Astronautics

Define the partial and total derivative matrices

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · · df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

n

f

⇥ n

x

n

f

⇥ n

x

f(x+ e

j

h) = f(x) + h

df

dx

j

+

h

2

2

d

2

f

dx

2

j

+ . . .)

df

dx

j

=

f(x+ e

j

h)� f(x)

h

+O(h)

v

i

= V

i

(v

1

, v

2

, . . . , v

i�1

), i = 1, . . . , n

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

) Dv = I +DV Dv (1)

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

1

Use this notation to write the chain rule in matrix form

Yielding the linear system

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · · df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

n

f

⇥ n

x

n

f

⇥ n

x

f(x+ e

j

h) = f(x) + h

df

dx

j

+

h

2

2

d

2

f

dx

2

j

+ . . .)

df

dx

j

=

f(x+ e

j

h)� f(x)

h

+O(h)

v

i

= V

i

(v

1

, v

2

, . . . , v

i�1

), i = 1, . . . , n

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

) Dv = I +DV Dv)

(I �DV)| {z }
n⇥n

Dv|{z}
n⇥n

= I|{z}
n⇥n

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

1

Equations for presentation

(I �DV)Dv = I) Dv = (I �DV)�1)
D

T

v =
⇣
(I �DV)�1

⌘
T

) (I �DV)T D

T

v = I

(I �DV)Dv = I) Dv = (I �DV)�1)
D

T

v = (I �DV)�T) (I �DV)T D

T

v = I

(I �DV)Dv = I = (I �DV)T Dv
T

(I �DV)Dv = I = (I �DV)T Dv
T

() Numerical Example April 22, 2012 0 / 0

16

The Chain Rule in Reverse
The two matrices are each other’s inverses, so

And we get the reverse form of the chain rule

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · ·
df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

Problem

2 input variables x

1

x

2

2 state variables y

1

y

2

2 residuals R

1

(x

1

, x

2

, y

1

, y

2

) = x

1

y

1

+ 2y

2

� sin x

1

R

2

(x

1

, x

2

, y

1

, y

2

) = �y

1

+ x

2

2

y

2

2 output functions F

1

(x

1

, x

2

, y

1

, y

2

) = y

1

F

2

(x

1

, x

2

, y

1

, y

2

) = y

2

sin x

1

Internal Coupling

x

1

2

�1 x

2

2

�
y

1

y

2

�
=

sin x

1

0

�

1

Both forward and reverse modes of the chain rule yield the identity

respect to v

i

as the square n⇥ n Jacobian matrix,

D

V

=

@V

i

@v

j

=

2

6666664

0 · · ·
@V2
@v1

0 · · ·
@V3
@v1

@V3
@v2

0 · · ·
...

...
.

@V

n

@v1

@V

n

@v2
· · · @V

n

@v

n�1
0

3

7777775
, (11)

where D is a differential operator. The total derivatives of the variables v
i

form another Jacobian matrix of the same
size that has a unit diagonal,

D

v

=

dv

i

dv

j

=

2

6666664

1 0 · · ·
dv2
dv1

1 0 · · ·
dv3
dv1

dv3
@v2

1 0 · · ·
...

...
.

dv

n

dv1

dv

n

dv2
· · · dv

n

dv

n�1
1

3

7777775
. (12)

Both of these matrices are lower triangular matrices, due to our assumption that we have unrolled all of the loops.
Using this notation, the chain rule (10) can be written as

D

v

= I +D

V

D

v

. (13)

Rearranging this, we obtain,
(I �D

V

)D

v

= I. (14)

where all of these matrices are square, with size n ⇥ n. The matrix (I � D

V

) can be formed by finding the partial
derivatives, and then we can solve for the total derivatives D

v

. Since (I �D

V

) and D

v

are inverses of each other,
we can further rearrange it to obtain the transposed system:

(I �D

V

)

T

D

T

v

= I. (15)

This leads to the following symmetric relationship:

(I �D

V

)D

v

= I = (I �D

V

)

T

D

T

v

(16)

� = = �

= =

We call the left and right hand sides of this equation the forward and reverse chain rule equations, respectively.
As we will see throughout this paper: All methods for derivative computation can be derived from one of the forms of

this chain rule (16) by changing what we mean by “variables”, which can be seen as a level of decomposition. The
various levels of decomposition are shown later in Fig. 17 and summarized in Table 1.

Below Eq. (16) we show the structure of the matrices involved. The derivatives of interest, df/ dx, are typically
the derivatives of some of the last variables with respect to some of the first variables in the sequence (v

1

, . . . , v

n

).
They are not necessarily in sequence, but for convenience we will assume that is the case, hence,

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

...
. . .

...
df

n

f

dx

1

· · · df

n

f

dx

n

x

3

777775
=

2

666664

dv

(n�n

f

)

dv

1

· · · dv

(n�n

f

)

dv

n

x

...
. . .

...
dv

n

dv

1

· · · dv

n

dv

n

x

3

777775
, (17)

This is an n

f

⇥n

x

matrix that corresponds to the lower-left block of D
v

— defined in Eq. (12) — or the corresponding
transposed upper-right block of DT

v

.
Note that D

V

is lower triangular, and therefore we can solve for a column of D

v

using forward substitution.
Conversely, DT

V

is upper triangular, and therefore we can solve for a row of D
v

using back substitution. Thus, each
of these versions of the chain rule incur different computational costs, depending on the shape of the Jacobian df/ dx.

5 of 26

American Institute of Aeronautics and Astronautics

17

Forward and Reverse Chain Rule

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · ·
df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

Problem

2 input variables x

1

x

2

2 state variables y

1

y

2

2 residuals R

1

(x

1

, x

2

, y

1

, y

2

) = x

1

y

1

+ 2y

2

� sin x

1

R

2

(x

1

, x

2

, y

1

, y

2

) = �y

1

+ x

2

2

y

2

2 output functions F

1

(x

1

, x

2

, y

1

, y

2

) = y

1

F

2

(x

1

, x

2

, y

1

, y

2

) = y

2

sin x

1

Internal Coupling

x

1

2

�1 x

2

2

�
y

1

y

2

�
=

sin x

1

0

�

1

1. Forward Mode

To get a better understanding of the structure of the chain rule (14), and the options for performing that computation,
we now write it in the matrix form (18):

(I �D

V

)D
v

= I)
2

6666664

1 0 · · ·
�@V2

@v1
1 0 · · ·

�@V3
@v1

�@V3
@v2

1 0 · · ·
...

...
.

�@V

n

@v1
�@V

n

@v2
· · · � @V

n

@v

n�1
1

3

7777775

2

6666664

1 0 · · ·
dv2
dv1

1 0 · · ·
dv3
dv1

dv3
@v2

1 0 · · ·
...

...
.

dv
n

dv1

dv
n

dv2
· · · dv

n

dv
n�1

1

3

7777775
=

2

666664

1 0 · · ·
0 1 0 · · ·
0 0 1 0 · · ·
...

...
...

.
0 0 0 0 1

3

777775
. (23)

The terms that we ultimately want to compute are the total derivatives of quantities of interest with respect to the design
variables, corresponding to a block in the D

v

matrix in the lower left. Using the definition expressed in Equation (1),
this block is

df

dx
=

2

666664

df1
dx1

· · · df1
dx

n

x

...
. . .

...
df

n

f

dx1

· · · df
n

f

dx
n

x

3

777775
=

2

666664

dv(n�n

f

)

dv1
· · · dv(n�n

f

)

dv
n

x

...
. . .

...
dv

n

dv1
· · · dv

n

dv
n

x

3

777775
, (24)

which is an n

f

⇥ n

x

matrix.
The forward mode is equivalent to solving the linear system (24) for one column of D

v

. Since (I�D

V

) is a lower
triangular matrix, this solution can be accomplished by forward substitution. In the process, We end up computing the
derivative of the chosen quantity with respect to all the other variables. The cost of this procedure is similar to the cost
of the procedure that computes the v’s, and as we will see in Section 3, the forward AD operations are interspersed
with the operations that compute the v’s in the original computer code.

2. Reverse Mode

The matrix representation for the reverse mode of algorithmic differentiation is given by Equation (19), which expands
to,

(I �D

V

)T D

T

v

= I)
2

66666664

1 �@V2
@v1

�@V3
@v1

· · · �@V

n

@v1

0 1 �@V3
@v2

· · · �@V

n

@v2

...
...

.
...

...
...

. . . 1 � @V

n

@v

n�1

0 0 · · · 0 1

3

77777775

2

66666664

1 dv2
dv1

dv3
dv1

· · · � dv
n

dv1

0 1 dv3
dv2

· · · dv
n

dv2
...

...
.

...
...

...
. . . 1 dv

n

dv
n�1

0 0 · · · 0 1

3

77777775

=

2

666664

1 0 · · ·
0 1 0 · · ·
0 0 1 0 · · ·
...

...
...

.
0 0 0 0 1

3

777775
. (25)

The block matrix we want to compute is in the upper right section of DT

v

and now its size is n
x

⇥ n

f

. As with the
forward mode, we need to solve this linear system one column at the time, but now each column yields the derivatives
of the chosen quantity with respect to all the other variables. Because the matrix (I �DV)T is upper triangular, the
system can be solved using back substitution.

3. Implementation and Tools

For readers that are not familiar with AD, we have worked through an example in Appendix A, in which the chain
rule (14) is applied both in forward and reverse modes, and the chain rule identity (20) is evaluated numerically for
the same example.

The implementation of AD that intersperses lines of code that computes the derivatives with the original code is
called the source code transformation approach and is exemplified in the code listed in Figure 12. There is another
alternative to implementing AD: operator overloading [32, 30]. When using this approach, the original code does not
change, but the variable types and the operations are redefined. When using operator overloading, each real number
v is replaced by a type that includes not only the original real number, but the corresponding derivative as well, i.e.,
v̄ = (v, dv). Then, all operations are redefined such that, in addition to the result of the original operations, they yield
the derivative of that operation as well [30].

9 of 26

American Institute of Aeronautics and Astronautics

1. Forward Mode

To get a better understanding of the structure of the chain rule (14), and the options for performing that computation,
we now write it in the matrix form (18):

(I �D

V

)D
v

= I)
2

6666664

1 0 · · ·
�@V2

@v1
1 0 · · ·

�@V3
@v1

�@V3
@v2

1 0 · · ·
...

...
.

�@V

n

@v1
�@V

n

@v2
· · · � @V

n

@v

n�1
1

3

7777775

2

6666664

1 0 · · ·
dv2
dv1

1 0 · · ·
dv3
dv1

dv3
@v2

1 0 · · ·
...

...
.

dv
n

dv1

dv
n

dv2
· · · dv

n

dv
n�1

1

3

7777775
=

2

666664

1 0 · · ·
0 1 0 · · ·
0 0 1 0 · · ·
...

...
...

.
0 0 0 0 1

3

777775
. (23)

The terms that we ultimately want to compute are the total derivatives of quantities of interest with respect to the design
variables, corresponding to a block in the D

v

matrix in the lower left. Using the definition expressed in Equation (1),
this block is

df

dx
=

2

666664

df1
dx1

· · · df1
dx

n

x

...
. . .

...
df

n

f

dx1

· · · df
n

f

dx
n

x

3

777775
=

2

666664

dv(n�n

f

)

dv1
· · · dv(n�n

f

)

dv
n

x

...
. . .

...
dv

n

dv1
· · · dv

n

dv
n

x

3

777775
, (24)

which is an n

f

⇥ n

x

matrix.
The forward mode is equivalent to solving the linear system (24) for one column of D

v

. Since (I�D

V

) is a lower
triangular matrix, this solution can be accomplished by forward substitution. In the process, We end up computing the
derivative of the chosen quantity with respect to all the other variables. The cost of this procedure is similar to the cost
of the procedure that computes the v’s, and as we will see in Section 3, the forward AD operations are interspersed
with the operations that compute the v’s in the original computer code.

2. Reverse Mode

The matrix representation for the reverse mode of algorithmic differentiation is given by Equation (19), which expands
to,

(I �D

V

)T D

T

v

= I)
2

66666664

1 �@V2
@v1

�@V3
@v1

· · · �@V

n

@v1

0 1 �@V3
@v2

· · · �@V

n

@v2

...
...

.
...

...
...

. . . 1 � @V

n

@v

n�1

0 0 · · · 0 1

3

77777775

2

66666664

1 dv2
dv1

dv3
dv1

· · · dv
n

dv1
0 1 dv3

dv2
· · · dv

n

dv2
...

...
.

...
...

...
. . . 1 dv

n

dv
n�1

0 0 · · · 0 1

3

77777775

=

2

666664

1 0 · · ·
0 1 0 · · ·
0 0 1 0 · · ·
...

...
...

.
0 0 0 0 1

3

777775
. (25)

The block matrix we want to compute is in the upper right section of DT

v

and now its size is n
x

⇥ n

f

. As with the
forward mode, we need to solve this linear system one column at the time, but now each column yields the derivatives
of the chosen quantity with respect to all the other variables. Because the matrix (I �DV)T is upper triangular, the
system can be solved using back substitution.

3. Implementation and Tools

For readers that are not familiar with AD, we have worked through an example in Appendix A, in which the chain
rule (14) is applied both in forward and reverse modes, and the chain rule identity (20) is evaluated numerically for
the same example.

The implementation of AD that intersperses lines of code that computes the derivatives with the original code is
called the source code transformation approach and is exemplified in the code listed in Figure 12. There is another
alternative to implementing AD: operator overloading [32, 30]. When using this approach, the original code does not
change, but the variable types and the operations are redefined. When using operator overloading, each real number
v is replaced by a type that includes not only the original real number, but the corresponding derivative as well, i.e.,
v̄ = (v, dv). Then, all operations are redefined such that, in addition to the result of the original operations, they yield
the derivative of that operation as well [30].

9 of 26

American Institute of Aeronautics and Astronautics

17

Forward and Reverse Chain Rule

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · ·
df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

Problem

2 input variables x

1

x

2

2 state variables y

1

y

2

2 residuals R

1

(x

1

, x

2

, y

1

, y

2

) = x

1

y

1

+ 2y

2

� sin x

1

R

2

(x

1

, x

2

, y

1

, y

2

) = �y

1

+ x

2

2

y

2

2 output functions F

1

(x

1

, x

2

, y

1

, y

2

) = y

1

F

2

(x

1

, x

2

, y

1

, y

2

) = y

2

sin x

1

Internal Coupling

x

1

2

�1 x

2

2

�
y

1

y

2

�
=

sin x

1

0

�

1

1. Forward Mode

To get a better understanding of the structure of the chain rule (14), and the options for performing that computation,
we now write it in the matrix form (18):

(I �D

V

)D
v

= I)
2

6666664

1 0 · · ·
�@V2

@v1
1 0 · · ·

�@V3
@v1

�@V3
@v2

1 0 · · ·
...

...
.

�@V

n

@v1
�@V

n

@v2
· · · � @V

n

@v

n�1
1

3

7777775

2

6666664

1 0 · · ·
dv2
dv1

1 0 · · ·
dv3
dv1

dv3
@v2

1 0 · · ·
...

...
.

dv
n

dv1

dv
n

dv2
· · · dv

n

dv
n�1

1

3

7777775
=

2

666664

1 0 · · ·
0 1 0 · · ·
0 0 1 0 · · ·
...

...
...

.
0 0 0 0 1

3

777775
. (23)

The terms that we ultimately want to compute are the total derivatives of quantities of interest with respect to the design
variables, corresponding to a block in the D

v

matrix in the lower left. Using the definition expressed in Equation (1),
this block is

df

dx
=

2

666664

df1
dx1

· · · df1
dx

n

x

...
. . .

...
df

n

f

dx1

· · · df
n

f

dx
n

x

3

777775
=

2

666664

dv(n�n

f

)

dv1
· · · dv(n�n

f

)

dv
n

x

...
. . .

...
dv

n

dv1
· · · dv

n

dv
n

x

3

777775
, (24)

which is an n

f

⇥ n

x

matrix.
The forward mode is equivalent to solving the linear system (24) for one column of D

v

. Since (I�D

V

) is a lower
triangular matrix, this solution can be accomplished by forward substitution. In the process, We end up computing the
derivative of the chosen quantity with respect to all the other variables. The cost of this procedure is similar to the cost
of the procedure that computes the v’s, and as we will see in Section 3, the forward AD operations are interspersed
with the operations that compute the v’s in the original computer code.

2. Reverse Mode

The matrix representation for the reverse mode of algorithmic differentiation is given by Equation (19), which expands
to,

(I �D

V

)T D

T

v

= I)
2

66666664

1 �@V2
@v1

�@V3
@v1

· · · �@V

n

@v1

0 1 �@V3
@v2

· · · �@V

n

@v2

...
...

.
...

...
...

. . . 1 � @V

n

@v

n�1

0 0 · · · 0 1

3

77777775

2

66666664

1 dv2
dv1

dv3
dv1

· · · � dv
n

dv1

0 1 dv3
dv2

· · · dv
n

dv2
...

...
.

...
...

...
. . . 1 dv

n

dv
n�1

0 0 · · · 0 1

3

77777775

=

2

666664

1 0 · · ·
0 1 0 · · ·
0 0 1 0 · · ·
...

...
...

.
0 0 0 0 1

3

777775
. (25)

The block matrix we want to compute is in the upper right section of DT

v

and now its size is n
x

⇥ n

f

. As with the
forward mode, we need to solve this linear system one column at the time, but now each column yields the derivatives
of the chosen quantity with respect to all the other variables. Because the matrix (I �DV)T is upper triangular, the
system can be solved using back substitution.

3. Implementation and Tools

For readers that are not familiar with AD, we have worked through an example in Appendix A, in which the chain
rule (14) is applied both in forward and reverse modes, and the chain rule identity (20) is evaluated numerically for
the same example.

The implementation of AD that intersperses lines of code that computes the derivatives with the original code is
called the source code transformation approach and is exemplified in the code listed in Figure 12. There is another
alternative to implementing AD: operator overloading [32, 30]. When using this approach, the original code does not
change, but the variable types and the operations are redefined. When using operator overloading, each real number
v is replaced by a type that includes not only the original real number, but the corresponding derivative as well, i.e.,
v̄ = (v, dv). Then, all operations are redefined such that, in addition to the result of the original operations, they yield
the derivative of that operation as well [30].

9 of 26

American Institute of Aeronautics and Astronautics

1. Forward Mode

To get a better understanding of the structure of the chain rule (14), and the options for performing that computation,
we now write it in the matrix form (18):

(I �D

V

)D
v

= I)
2

6666664

1 0 · · ·
�@V2

@v1
1 0 · · ·

�@V3
@v1

�@V3
@v2

1 0 · · ·
...

...
.

�@V

n

@v1
�@V

n

@v2
· · · � @V

n

@v

n�1
1

3

7777775

2

6666664

1 0 · · ·
dv2
dv1

1 0 · · ·
dv3
dv1

dv3
@v2

1 0 · · ·
...

...
.

dv
n

dv1

dv
n

dv2
· · · dv

n

dv
n�1

1

3

7777775
=

2

666664

1 0 · · ·
0 1 0 · · ·
0 0 1 0 · · ·
...

...
...

.
0 0 0 0 1

3

777775
. (23)

The terms that we ultimately want to compute are the total derivatives of quantities of interest with respect to the design
variables, corresponding to a block in the D

v

matrix in the lower left. Using the definition expressed in Equation (1),
this block is

df

dx
=

2

666664

df1
dx1

· · · df1
dx

n

x

...
. . .

...
df

n

f

dx1

· · · df
n

f

dx
n

x

3

777775
=

2

666664

dv(n�n

f

)

dv1
· · · dv(n�n

f

)

dv
n

x

...
. . .

...
dv

n

dv1
· · · dv

n

dv
n

x

3

777775
, (24)

which is an n

f

⇥ n

x

matrix.
The forward mode is equivalent to solving the linear system (24) for one column of D

v

. Since (I�D

V

) is a lower
triangular matrix, this solution can be accomplished by forward substitution. In the process, We end up computing the
derivative of the chosen quantity with respect to all the other variables. The cost of this procedure is similar to the cost
of the procedure that computes the v’s, and as we will see in Section 3, the forward AD operations are interspersed
with the operations that compute the v’s in the original computer code.

2. Reverse Mode

The matrix representation for the reverse mode of algorithmic differentiation is given by Equation (19), which expands
to,

(I �D

V

)T D

T

v

= I)
2

66666664

1 �@V2
@v1

�@V3
@v1

· · · �@V

n

@v1

0 1 �@V3
@v2

· · · �@V

n

@v2

...
...

.
...

...
...

. . . 1 � @V

n

@v

n�1

0 0 · · · 0 1

3

77777775

2

66666664

1 dv2
dv1

dv3
dv1

· · · dv
n

dv1
0 1 dv3

dv2
· · · dv

n

dv2
...

...
.

...
...

...
. . . 1 dv

n

dv
n�1

0 0 · · · 0 1

3

77777775

=

2

666664

1 0 · · ·
0 1 0 · · ·
0 0 1 0 · · ·
...

...
...

.
0 0 0 0 1

3

777775
. (25)

The block matrix we want to compute is in the upper right section of DT

v

and now its size is n
x

⇥ n

f

. As with the
forward mode, we need to solve this linear system one column at the time, but now each column yields the derivatives
of the chosen quantity with respect to all the other variables. Because the matrix (I �DV)T is upper triangular, the
system can be solved using back substitution.

3. Implementation and Tools

For readers that are not familiar with AD, we have worked through an example in Appendix A, in which the chain
rule (14) is applied both in forward and reverse modes, and the chain rule identity (20) is evaluated numerically for
the same example.

The implementation of AD that intersperses lines of code that computes the derivatives with the original code is
called the source code transformation approach and is exemplified in the code listed in Figure 12. There is another
alternative to implementing AD: operator overloading [32, 30]. When using this approach, the original code does not
change, but the variable types and the operations are redefined. When using operator overloading, each real number
v is replaced by a type that includes not only the original real number, but the corresponding derivative as well, i.e.,
v̄ = (v, dv). Then, all operations are redefined such that, in addition to the result of the original operations, they yield
the derivative of that operation as well [30].

9 of 26

American Institute of Aeronautics and Astronautics

17

Forward and Reverse Chain Rule

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · ·
df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

Problem

2 input variables x

1

x

2

2 state variables y

1

y

2

2 residuals R

1

(x

1

, x

2

, y

1

, y

2

) = x

1

y

1

+ 2y

2

� sin x

1

R

2

(x

1

, x

2

, y

1

, y

2

) = �y

1

+ x

2

2

y

2

2 output functions F

1

(x

1

, x

2

, y

1

, y

2

) = y

1

F

2

(x

1

, x

2

, y

1

, y

2

) = y

2

sin x

1

Internal Coupling

x

1

2

�1 x

2

2

�
y

1

y

2

�
=

sin x

1

0

�

1

1. Forward Mode

To get a better understanding of the structure of the chain rule (14), and the options for performing that computation,
we now write it in the matrix form (18):

(I �D

V

)D
v

= I)
2

6666664

1 0 · · ·
�@V2

@v1
1 0 · · ·

�@V3
@v1

�@V3
@v2

1 0 · · ·
...

...
.

�@V

n

@v1
�@V

n

@v2
· · · � @V

n

@v

n�1
1

3

7777775

2

6666664

1 0 · · ·
dv2
dv1

1 0 · · ·
dv3
dv1

dv3
@v2

1 0 · · ·
...

...
.

dv
n

dv1

dv
n

dv2
· · · dv

n

dv
n�1

1

3

7777775
=

2

666664

1 0 · · ·
0 1 0 · · ·
0 0 1 0 · · ·
...

...
...

.
0 0 0 0 1

3

777775
. (23)

The terms that we ultimately want to compute are the total derivatives of quantities of interest with respect to the design
variables, corresponding to a block in the D

v

matrix in the lower left. Using the definition expressed in Equation (1),
this block is

df

dx
=

2

666664

df1
dx1

· · · df1
dx

n

x

...
. . .

...
df

n

f

dx1

· · · df
n

f

dx
n

x

3

777775
=

2

666664

dv(n�n

f

)

dv1
· · · dv(n�n

f

)

dv
n

x

...
. . .

...
dv

n

dv1
· · · dv

n

dv
n

x

3

777775
, (24)

which is an n

f

⇥ n

x

matrix.
The forward mode is equivalent to solving the linear system (24) for one column of D

v

. Since (I�D

V

) is a lower
triangular matrix, this solution can be accomplished by forward substitution. In the process, We end up computing the
derivative of the chosen quantity with respect to all the other variables. The cost of this procedure is similar to the cost
of the procedure that computes the v’s, and as we will see in Section 3, the forward AD operations are interspersed
with the operations that compute the v’s in the original computer code.

2. Reverse Mode

The matrix representation for the reverse mode of algorithmic differentiation is given by Equation (19), which expands
to,

(I �D

V

)T D

T

v

= I)
2

66666664

1 �@V2
@v1

�@V3
@v1

· · · �@V

n

@v1

0 1 �@V3
@v2

· · · �@V

n

@v2

...
...

.
...

...
...

. . . 1 � @V

n

@v

n�1

0 0 · · · 0 1

3

77777775

2

66666664

1 dv2
dv1

dv3
dv1

· · · � dv
n

dv1

0 1 dv3
dv2

· · · dv
n

dv2
...

...
.

...
...

...
. . . 1 dv

n

dv
n�1

0 0 · · · 0 1

3

77777775

=

2

666664

1 0 · · ·
0 1 0 · · ·
0 0 1 0 · · ·
...

...
...

.
0 0 0 0 1

3

777775
. (25)

The block matrix we want to compute is in the upper right section of DT

v

and now its size is n
x

⇥ n

f

. As with the
forward mode, we need to solve this linear system one column at the time, but now each column yields the derivatives
of the chosen quantity with respect to all the other variables. Because the matrix (I �DV)T is upper triangular, the
system can be solved using back substitution.

3. Implementation and Tools

For readers that are not familiar with AD, we have worked through an example in Appendix A, in which the chain
rule (14) is applied both in forward and reverse modes, and the chain rule identity (20) is evaluated numerically for
the same example.

The implementation of AD that intersperses lines of code that computes the derivatives with the original code is
called the source code transformation approach and is exemplified in the code listed in Figure 12. There is another
alternative to implementing AD: operator overloading [32, 30]. When using this approach, the original code does not
change, but the variable types and the operations are redefined. When using operator overloading, each real number
v is replaced by a type that includes not only the original real number, but the corresponding derivative as well, i.e.,
v̄ = (v, dv). Then, all operations are redefined such that, in addition to the result of the original operations, they yield
the derivative of that operation as well [30].

9 of 26

American Institute of Aeronautics and Astronautics

1. Forward Mode

To get a better understanding of the structure of the chain rule (14), and the options for performing that computation,
we now write it in the matrix form (18):

(I �D

V

)D
v

= I)
2

6666664

1 0 · · ·
�@V2

@v1
1 0 · · ·

�@V3
@v1

�@V3
@v2

1 0 · · ·
...

...
.

�@V

n

@v1
�@V

n

@v2
· · · � @V

n

@v

n�1
1

3

7777775

2

6666664

1 0 · · ·
dv2
dv1

1 0 · · ·
dv3
dv1

dv3
@v2

1 0 · · ·
...

...
.

dv
n

dv1

dv
n

dv2
· · · dv

n

dv
n�1

1

3

7777775
=

2

666664

1 0 · · ·
0 1 0 · · ·
0 0 1 0 · · ·
...

...
...

.
0 0 0 0 1

3

777775
. (23)

The terms that we ultimately want to compute are the total derivatives of quantities of interest with respect to the design
variables, corresponding to a block in the D

v

matrix in the lower left. Using the definition expressed in Equation (1),
this block is

df

dx
=

2

666664

df1
dx1

· · · df1
dx

n

x

...
. . .

...
df

n

f

dx1

· · · df
n

f

dx
n

x

3

777775
=

2

666664

dv(n�n

f

)

dv1
· · · dv(n�n

f

)

dv
n

x

...
. . .

...
dv

n

dv1
· · · dv

n

dv
n

x

3

777775
, (24)

which is an n

f

⇥ n

x

matrix.
The forward mode is equivalent to solving the linear system (24) for one column of D

v

. Since (I�D

V

) is a lower
triangular matrix, this solution can be accomplished by forward substitution. In the process, We end up computing the
derivative of the chosen quantity with respect to all the other variables. The cost of this procedure is similar to the cost
of the procedure that computes the v’s, and as we will see in Section 3, the forward AD operations are interspersed
with the operations that compute the v’s in the original computer code.

2. Reverse Mode

The matrix representation for the reverse mode of algorithmic differentiation is given by Equation (19), which expands
to,

(I �D

V

)T D

T

v

= I)
2

66666664

1 �@V2
@v1

�@V3
@v1

· · · �@V

n

@v1

0 1 �@V3
@v2

· · · �@V

n

@v2

...
...

.
...

...
...

. . . 1 � @V

n

@v

n�1

0 0 · · · 0 1

3

77777775

2

66666664

1 dv2
dv1

dv3
dv1

· · · dv
n

dv1
0 1 dv3

dv2
· · · dv

n

dv2
...

...
.

...
...

...
. . . 1 dv

n

dv
n�1

0 0 · · · 0 1

3

77777775

=

2

666664

1 0 · · ·
0 1 0 · · ·
0 0 1 0 · · ·
...

...
...

.
0 0 0 0 1

3

777775
. (25)

The block matrix we want to compute is in the upper right section of DT

v

and now its size is n
x

⇥ n

f

. As with the
forward mode, we need to solve this linear system one column at the time, but now each column yields the derivatives
of the chosen quantity with respect to all the other variables. Because the matrix (I �DV)T is upper triangular, the
system can be solved using back substitution.

3. Implementation and Tools

For readers that are not familiar with AD, we have worked through an example in Appendix A, in which the chain
rule (14) is applied both in forward and reverse modes, and the chain rule identity (20) is evaluated numerically for
the same example.

The implementation of AD that intersperses lines of code that computes the derivatives with the original code is
called the source code transformation approach and is exemplified in the code listed in Figure 12. There is another
alternative to implementing AD: operator overloading [32, 30]. When using this approach, the original code does not
change, but the variable types and the operations are redefined. When using operator overloading, each real number
v is replaced by a type that includes not only the original real number, but the corresponding derivative as well, i.e.,
v̄ = (v, dv). Then, all operations are redefined such that, in addition to the result of the original operations, they yield
the derivative of that operation as well [30].

9 of 26

American Institute of Aeronautics and Astronautics

18

Methods for Computing Derivatives

Generalized Chain Rule

Forward Reverse

Algorithmic Differentiation

Forward Reverse

Analytic Methods

Direct Adjoint

Coupled – Residual

Direct Adjoint

Monolithic (black
box) methods

Coupled – Functional Coupled – HybridFinite
Differences

Complex
Step

Symbolic
Differentiation

v=(x,f)

Direct Adjoint Direct Adjoint

v=(x,...,f) v=(x,r,y,f) v=(x,r
i
,y

i
,f)

r
i
=y

i
-Y

i
) r

i
=y

i
-Y

i
)

Figure 17: Diagram showing how the generalized chain rule unifies all derivative computation methods. Monolithic
differentiation, algorithmic differentiation, analytic methods, and coupled analytic methods can all be derived from
the forward or reverse mode of the generalized chain rule by making an appropriate choice of exposed variables.
For black-box finite differences, complex step, and symbolic differentiation, the forward and reverse modes yield the
same result. The coupled function and coupled hybrid methods can be derived from the coupled residual method by
artificially defining residual and state variables and inserting these into the coupled residual equations.

Finally, the analytic methods were generalized for the case of multidisciplinary systems, where multiple solvers
are coupled. Two different approaches — the residual approach and the functional approach — were shown to be
possible for both the coupled direct and couple adjoint methods, resulting in four possible combinations. In addition,
we showed that it is possible to combine the residual and functional approaches to create a hybrid approach. This
flexibility is valuable, since it is not always possible to use one or the other, due to limitations of the disciplinary
solvers.

In summary, each of the methods for computing derivatives shares a common origin, but they differ in three aspects.
Table 1 classifies each of these methods in terms of the level of decomposition at which the generalized chain rule is
applied, the differentiation method used to assemble the Jacobian of partial derivatives, and the strategy for solving
the linear system that results.

VI. Future Research and Applications

The development of methods for obtaining the derivatives of computational models has generally lagged the de-
velopment of the computational models themselves. However, the theory and implementation of efficient methods
for computing derivatives is now well understood, so it is now possible to implement the derivative computations
concurrently with the code for the computational model.

We would argue that this is concurrent development is advisable, since it pays to keep in mind that the code is
going to be differentiated. It often happens, for example, that artificial discontinuities are introduced due to numerical
procedures. These discontinuities prevent the computation of accurate derivative even when the original computational
model is smooth and differentiable. The concurrent implementation of the model and the derivatives can also provide
insights into how to implement the model in such a way that makes the derivative computation more efficient. In
addition, when derivatives are readily available, they can be used to accelerate the convergence of the model solver
using Newton-type methods. Thus, we expect that the development of new solvers will increasingly be accompanied
by the development of an efficient method for computing the derivatives of those solvers.

As previously mentioned, one of the major applications of derivatives is gradient-based optimization. Most
gradient-based optimization algorithms perform finite differences to estimate the gradients by default, and indeed
most users of this software do not change this default setting, or do finite differences themselves. As we discussed
in this paper, finite differences are costly when the number of inputs is large, adding to the computational cost of the
optimization. Furthermore, finite differences are subject to potentially large errors, which are responsible for most
of the failures in numerical optimization. These problems have prevented the more widespread use of gradient-based
optimization because many users erroneously blame the computational cost and lack of robustness on the optimization

25 of 26

American Institute of Aeronautics and Astronautics

how AD is implemented, it will become clear that this assumption is not restrictive, as programs iterate the chain rule
(and thus the total derivatives) together with the program variables, converging to the correct total derivatives.

In the AD perspective, the independent variables x and the quantities of interest f are assumed to be in the vector
of variables v. Typically, the design variables are among the v’s with lower indices, and the quantities of interest are
among the last quantities. Thus, to make clear the connection to the other derivative computation methods, we group
these variables as follows,

v = [v1, . . . , vn
x| {z }

x

, . . . , v

j

, . . . , v

i

, . . . , v(n�n

f

), . . . , vn| {z }
f

]T . (21)

r
2

r
1

f

y

x

r

y
2

y
1

v
1

v
2

v
3

v
4

.

.

.

v
n

v = [v1, . . . , vn
x| {z }

x

, . . . , v

j

, . . . , v

i

, . . . , v(n�n

f

), . . . , vn| {z }
f

]T

Figure 4: Decomposition level for algorithmic differentiation: the variables v are all the variables assigned in the
computer program.

The chain rule 14 introduced in the previous section was

dv
i

dv
j

= �

ij

+
i�1X

k=j

@V

i

@v

k

dv
k

dv
j

, (22)

where the V represent explicit functions, each defined by a single line in the computer program. The partial derivatives,
@V

i

/@v

k

can be automatically differentiated symbolically by applying another chain rule within the function defined
by the respective line.

The chain rule (22) can be solved in two ways. In the forward mode, we choose one v

j

and keep j fixed. Then
we work our way forward in the index i = 1, 2, . . . , n until we get the desired total derivative. In the reverse mode,
on the other hand, we fix v

i

(the quantity we want to differentiate) and work our way backward in the index j =
n, n � 1, . . . , 1 all the way to the independent variables. We now describe these two modes in more detail, and
compare the computational costs associated with each of them.

1. Forward Mode

To get a better understanding of the structure of the chain rule (14), and the options for performing that computation,
we now write it in the matrix form (18):

(I �D

V

)D
v

= I)

8 of 26

American Institute of Aeronautics and Astronautics

r
2

r
1

y
2

y
1

f

y

x

r

v = [v1, . . . , vn
x| {z }

�x

, v(n
x

+1), . . . , v(n
x

+n

y

)| {z }
�r

, v(n
x

+n

y

+1), . . . , v(n
x

+2n
y

)| {z }
�y

, v(n�n

f

), . . . , tn| {z }
�f

]T .

Figure 5: Decomposition level for analytic methods

�x

�r

�y

�f

Figure 6: Dependence of the variations in the design variables, residuals, states and quantities of interest for the
linearized system

The solution vector �y from this linear system is used in conjunction with the original perturbation vector �x to
compute the total change in �f , i.e.,

v1 = �x (36)

v2 = �r =
@R

@x

�x (37)

v3 = �y =

@R

@y

��1

(��r) (38)

v4 = �f =
@F

@x

�x+
@F

@y

�y (39)

(40)

At this point, all variables are functions of only previous variables, so we can apply the forward and reverse chain

12 of 26

American Institute of Aeronautics and Astronautics

y

r

r
2

r
1

f

x

y
2

y
1

v = [v1, . . . , vn
x| {z }

x

, . . . , v(n
x

+n

y1)| {z }
r1

, . . . , v(n
x

+n

y1+n

y2)| {z }
r2

, . . . , v(n
x

+2n
y1+n

y2)| {z }
y1

, . . . , v(n
x

+2n
y1+2n

y2)| {z }
y2

, v(n�n

f

), . . . , tn| {z }
f

]T .

Figure 8: Decomposition for the disciplinary level

�x

�r1

�r2

�y1

�y2

�f

(a) Residual

�x

�y1

�y2

�f

(b) Functional

�x

�r1

�y1

�y2

�f

(c) Hybrid

Figure 9: The different approaches for handling coupled multidisciplinary systems

Monolithic Analytic Multidisciplinary analytic AD

Level of decomposition Black box Solver Discipline Line of code
Differentiation method FD/CS Any Any Symbolic
Linear solution Trivial Numerical Numerical (block) Forward-substitution

Back-substitution

Table 1: Classification of the methods for computing derivatives with respect to the level of decomposition, differen-
tiation method, and strategy for solving the linear system.

15 of 26

American Institute of Aeronautics and Astronautics

19

Direct vs. Adjoint Methods

The linearized residual equations (41) provide the means for computing the total sensitivity matrix dy/ dx, by
rewriting those equations as

@R

@y

dy

dx

= �@R

@x

. (42)

Substituting this result into the total derivative equation (40), we obtain

df

dx

=

@F

@x

� @F

@y

� dy

dxz }| {
@R

@y

��1

@R

@x

.

| {z }

(43)

n

f

> n

x

n

x

> n

f

df

dx

=

@F

@x

� @F

@y

@R

@y

��1

@R

@x

= – = –

Direct method n

f

> n

x

n

x

> n

f

df

dx

=

@F

@x

+

@F

@y

dy

dx

= + = +

� @R

@y

dy

dx

=
@R

@x

– = – =

Adjoint method n

f

> n

x

n

x

> n

f

df

dx

=

@F

@x

+

df

dr

@R

@x

= + = +

�

@R

@y

�
T

df

dr

�
T

=

@F

@y

�
T – = – =

Figure 9: Block matrix diagrams illustrating the direct and adjoint methods. The matrices in blue contain partial
derivatives and are relatively cheap to compute. The matrices in red contain total derivatives that are computed by
solving linear systems (the third and fifth rows). In both cases, it is assumed that n

y

� n

x

, n

f

.

The inverse of the square Jacobian matrix @R/@y is not necessarily explicitly calculated. However, we use the
inverse to denote the fact that this matrix needs to be solved as a linear system with some right-hand-side vector.

Eq. (43) shows that there are two ways of obtaining the total derivative matrix dy/ dx, depending on which right-
hand side is chosen for the solution of the linear system. Fig. 9 shows the sizes of the matrices in Eq. (43), which
depend on the shape of df/ dx. The diagrams in Fig. 9 illustrate why the direct method is preferable when n

f

> n

x

and the adjoint method is more efficient when n

x

< n

f

. This is the same fundamental difference that we observed
between the forward and reverse forms of the unifying chain rule.

16 of 26

American Institute of Aeronautics and Astronautics

20

In a nutshell...
• Algorithmic differentiation (forward and reverse) and analytic

methods (direct and reverse) can be derived from:

how AD is implemented, it will become clear that this assumption is not restrictive, as programs iterate the chain rule
(and thus the total derivatives) together with the program variables, converging to the correct total derivatives.

In the AD perspective, the independent variables x and the quantities of interest f are assumed to be in the vector
of variables v. Typically, the design variables are among the v’s with lower indices, and the quantities of interest are
among the last quantities. Thus, to make clear the connection to the other derivative computation methods, we group
these variables as follows,

v = [v1, . . . , vn
x| {z }

x

, . . . , v

j

, . . . , v

i

, . . . , v(n�n

f

), . . . , vn| {z }
f

]T . (21)

r
2

r
1

f

y

x

r

y
2

y
1

v
1

v
2

v
3

v
4

.

.

.

v
n

v = [v1, . . . , vn
x| {z }

x

, . . . , v

j

, . . . , v

i

, . . . , v(n�n

f

), . . . , vn| {z }
f

]T

Figure 4: Decomposition level for algorithmic differentiation: the variables v are all the variables assigned in the
computer program.

The chain rule 14 introduced in the previous section was

dv
i

dv
j

= �

ij

+
i�1X

k=j

@V

i

@v

k

dv
k

dv
j

, (22)

where the V represent explicit functions, each defined by a single line in the computer program. The partial derivatives,
@V

i

/@v

k

can be automatically differentiated symbolically by applying another chain rule within the function defined
by the respective line.

The chain rule (22) can be solved in two ways. In the forward mode, we choose one v

j

and keep j fixed. Then
we work our way forward in the index i = 1, 2, . . . , n until we get the desired total derivative. In the reverse mode,
on the other hand, we fix v

i

(the quantity we want to differentiate) and work our way backward in the index j =
n, n � 1, . . . , 1 all the way to the independent variables. We now describe these two modes in more detail, and
compare the computational costs associated with each of them.

1. Forward Mode

To get a better understanding of the structure of the chain rule (14), and the options for performing that computation,
we now write it in the matrix form (18):

(I �D

V

)D
v

= I)

8 of 26

American Institute of Aeronautics and Astronautics

r
2

r
1

y
2

y
1

f

y

x

r

v = [v1, . . . , vn
x| {z }

�x

, v(n
x

+1), . . . , v(n
x

+n

y

)| {z }
�r

, v(n
x

+n

y

+1), . . . , v(n
x

+2n
y

)| {z }
�y

, v(n�n

f

), . . . , tn| {z }
�f

]T .

Figure 5: Decomposition level for analytic methods

�x

�r

�y

�f

Figure 6: Dependence of the variations in the design variables, residuals, states and quantities of interest for the
linearized system

The solution vector �y from this linear system is used in conjunction with the original perturbation vector �x to
compute the total change in �f , i.e.,

v1 = �x (36)

v2 = �r =
@R

@x

�x (37)

v3 = �y =

@R

@y

��1

(��r) (38)

v4 = �f =
@F

@x

�x+
@F

@y

�y (39)

(40)

At this point, all variables are functions of only previous variables, so we can apply the forward and reverse chain

12 of 26

American Institute of Aeronautics and Astronautics

y

r

r
2

r
1

f

x

y
2

y
1

v = [v1, . . . , vn
x| {z }

x

, . . . , v(n
x

+n

y1)| {z }
r1

, . . . , v(n
x

+n

y1+n

y2)| {z }
r2

, . . . , v(n
x

+2n
y1+n

y2)| {z }
y1

, . . . , v(n
x

+2n
y1+2n

y2)| {z }
y2

, v(n�n

f

), . . . , tn| {z }
f

]T .

Figure 8: Decomposition for the disciplinary level

�x

�r1

�r2

�y1

�y2

�f

(a) Residual

�x

�y1

�y2

�f

(b) Functional

�x

�r1

�y1

�y2

�f

(c) Hybrid

Figure 9: The different approaches for handling coupled multidisciplinary systems

Monolithic Analytic Multidisciplinary analytic AD

Level of decomposition Black box Solver Discipline Line of code
Differentiation method FD/CS Any Any Symbolic
Linear solution Trivial Numerical Numerical (block) Forward-substitution

Back-substitution

Table 1: Classification of the methods for computing derivatives with respect to the level of decomposition, differen-
tiation method, and strategy for solving the linear system.

15 of 26

American Institute of Aeronautics and Astronautics

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · ·
df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

Problem

2 input variables x

1

x

2

2 state variables y

1

y

2

2 residuals R

1

(x

1

, x

2

, y

1

, y

2

) = x

1

y

1

+ 2y

2

� sin x

1

R

2

(x

1

, x

2

, y

1

, y

2

) = �y

1

+ x

2

2

y

2

2 output functions F

1

(x

1

, x

2

, y

1

, y

2

) = y

1

F

2

(x

1

, x

2

, y

1

, y

2

) = y

2

sin x

1

Internal Coupling

x

1

2

�1 x

2

2

�
y

1

y

2

�
=

sin x

1

0

�

1

• It is all about defining the variables involved to the right level of
decomposition

• More details in the paper

[Martins and Hwang, AIAA SDM, 2012]

http://mdolab.engin.umich.edu/content/coupled-adjoint-sensitivity-analysis-method-high-fidelity-aero-structural-design-0
http://mdolab.engin.umich.edu/content/coupled-adjoint-sensitivity-analysis-method-high-fidelity-aero-structural-design-0

What tools do we have for
high-fidelity aerostructural
analysis and optimization?

fan
tas

tic

MDO for Aircraft Configurations with High-fidelity (MACH)

22

the component modules themselves are compiled into shared objects and an interpreted Python script
is used to join them.

This approach, however, still limits the ability of a non-expert user to use a large number of modules,
since that would still require the knowledge of the unique interface and data structures for each module.
In this way, using Python is no di�erent from using Fortran or C/C++ to couple all the component
libraries: it is simply a high-level “glue”. With this in mind, MDO research would not be significantly
easier because the process of rearranging the flow of information among disciplines would still be tedious.
Fortunately, Python has the capability to solve this problem.

To enable the utilization of modules representing a wide range of disciplines (or multiple codes that
simulate the same discipline with di�erent methods) without overwhelming the user we abstract these
modules and represent them with objects that are closely tied to what they simulate: flow solution
objects, mesh objects, structural models, etc. Each code represented by a particular type of object has
the same interface, although internally, the Python interface to the lower level language is unique. For
example, every flow solution object representing di�erent flow solvers has the same interface for returning
the surface pressure. This way modules are interchangeable and the user only needs to know one interface
for each discipline or task.

Although these are primarily computer science and information transfer and storage issues, they are
equally important to the successful implementation of an MDO environment. This paper presents results
corresponding to a CFD code written in Fortran 90/95, a panel code written in C++, a structural finite-
element code written in C++, and several utilities written in Fortran, C/C++ and Python. Various
interfaces for parallel processing are used, including MPI and ????.

To wrap Fortran codes, we use F2PY, which is a tools that automatically builds a Python module
that can access Fortran subroutines and data[43,42]. A similar tool (SWIG) is used to wrap C/C++ [5].

A unified modeling language (UML) class diagram for the MACH framework is shown in Figure 9.

AeroStruct
globalComm: Comm
localComm: Comm
flags: scalar
aeroOptions: Dict
structOptions: Dict
mdOptions: Dict
__init__()
initialize()
solve()
solveCoupledAdjoint()
initializeCoupledAdjoint()
setupCoupledAdjointSystem()
computeTotalCoupledSensitivities()
solveCSMCoupledAdjoint()
getCSMAdjointRHS()
solveCFDCoupledAdjoint()
getTotalDerivativeStructural() AeroProblem

name: String
geometry: Dict
flow_set: Dict
ref_set: Dict
__init__()
ListAttributes()
__str__()

Flow
name: String
mach: Scalar
alpha: Scalar
beta: Scalar
phat: Scalar
rhat: Scalar
qhat: Scalar
__init__()
ListAttributes()
__str__()

Geometry
name: String
__init__()
ListAttributes()
__str__()

Reference
name: Dict
sref: Scalar
bref: Scalar
cref: Scalar
xref: Scalar
yref: Scalar
zref: Scalar
__init__()
ListAttributes()
__str__()

AeroSolver
name: String
category: Dict
def_options: Dict
informs: Dict
__init__()
__solve__()
__call__()
initialize()
initAdjoint()
getSurfaceCoordinates()
setSurfaceCoordinates()
getSolution()
totalSurfaceDerivative()
totalAeroDerivative()
solveAdjoint()
addAeroDV()

StructSolver
name: String
__init__()
__solve__()
__call__()
initializeSolve()
setForces()
getDisplacements()
getSolution()

StructProblem
name: String
__init__()
ListAttributes()
__str__()

MeshWarping
name: String
__init__()
ListAttributes()
__str__()

TransferDisp
name: String
__init__()
ListAttributes()
__str__()

Fig. 9 Unified modeling language class diagrams for the MACH framework

14

Components

Flow Solver:
Stanford University Multi-Block (SUmb)
3D Navier Stokes equations on structured multi-block grids
Explicit time stepping with multi-grid and residual smoothing
Adjoint method implemented only for Euler Equations

ARW2 Flow Solution at Mach=0.8

pyLayout

Automatic parametric wing-box like structure generation
Outer-mould line and structure description required
Sets structure directly in memory in TACS

G. Kenway, UTIAS CAD-Free High-Fidelity Optimization September 14th,2010 8/23

Complex Configurations
Isolated curves, surfaces and volumes rarely fully describe

a geometry of interestPython modules for working with collections of spline

objects
Least-squares regression fitting with exact C 0 continuity

along edges

FFD deformation volumes (left) and tensor B-spline surface

representation (right) of DPW4 geometry
G. Kenway, UTIAS CAD-Free High-Fidelity Optimization September 14th,2010

5/23

CFD: SUmb

CSM: TACS

“CAD”: PSG

Fully coupled aerostructural analysisNonlinear Block Gauss–Seidel Method (NLGBS)

A: Aerodynamic residuals
w: Aerodynamic states
S: Structural residuals
u: Structural states

Little code modification required for each solver
May not converge for highly flexible structures
Convergence can be accelerated with Aitken acceleration

✓ ✓

1�

�
�u

(k) ��u

(k�1)
�
·�u

(k)

k
�
�u

(k) ��u

(k�1)
�
k2

!

u

(k+1) u

(k) + ✓�u

(k)

4 / 26

 Two available methods:

• A nonlinear block Gauss–Seidel method with Aitken acceleration

• A coupled Newton–Krylov method

Coupled Newton–Krylov Method (NK)

Monolithic solution strategy

Full aerostructural problem is treated simultaneously

Find Newton update by inexactly solving:

@A
@w

@A
@u

@S
@w

@S
@u

�
�w

�u

�
= �

A (w)
S (u)

�

Matrix-free FGMRES from petsc4py for solution

Preconditioning is accomplished with a Block–Jacobi
method reusing implicit discipline methods

Very little code modification!

5 / 25

24

�

⇧⇤
⇤A
⇤w

⇤A
⇤u

⇤S
⇤w

⇤S
⇤u

⇥

⌃⌅

T �

⇧⇤
⇥

�

⇥

⌃⌅ = �

�

⇧⇤
⇤f
⇤w
⇤f
⇤u

⇥

⌃⌅

⇤A

⇤w
⇥ = � ⇤f

⇤w
� ⇤S

⇤w
�̃

⇤S

⇤u
� = � ⇤f

⇤u
�⇤A

⇤u
⇥̃

df

dx
=

⇤f

⇤x
+ ⇥

⇤A

⇤x
+ �

⇤S

⇤x

Joaquim R. R. A. Martins (UTIAS) http://mdolab.utias.utoronto.ca 3 / 4

Adjoint equations for the aerostructural system

Total derivatives

�

⇧⇤
⇤A
⇤w

⇤A
⇤u

⇤S
⇤w

⇤S
⇤u

⇥

⌃⌅

T �

⇧⇤
⇥

�

⇥

⌃⌅ = �

�

⇧⇤
⇤f
⇤w
⇤f
⇤u

⇥

⌃⌅

⇤A

⇤w
⇥ = � ⇤f

⇤w
� ⇤S

⇤w
�̃

⇤S

⇤u
� = � ⇤f

⇤u
�⇤A

⇤u
⇥̃

df

dx
=

⇤f

⇤x
+ ⇥

⇤A

⇤x
+ �

⇤S

⇤x

Joaquim R. R. A. Martins (UTIAS) http://mdolab.utias.utoronto.ca 4 / 5

[Martins et al., Optimization and Engineering, 2005]

The coupled adjoint is the reason we require
the source code for each component

http://mdolab.engin.umich.edu/content/coupled-adjoint-sensitivity-analysis-method-high-fidelity-aero-structural-design-0
http://mdolab.engin.umich.edu/content/coupled-adjoint-sensitivity-analysis-method-high-fidelity-aero-structural-design-0

24

�

⇧⇤
⇤A
⇤w

⇤A
⇤u

⇤S
⇤w

⇤S
⇤u

⇥

⌃⌅

T �

⇧⇤
⇥

�

⇥

⌃⌅ = �

�

⇧⇤
⇤f
⇤w
⇤f
⇤u

⇥

⌃⌅

⇤A

⇤w
⇥ = � ⇤f

⇤w
� ⇤S

⇤w
�̃

⇤S

⇤u
� = � ⇤f

⇤u
�⇤A

⇤u
⇥̃

df

dx
=

⇤f

⇤x
+ ⇥

⇤A

⇤x
+ �

⇤S

⇤x

Joaquim R. R. A. Martins (UTIAS) http://mdolab.utias.utoronto.ca 3 / 4

Adjoint equations for the aerostructural system

Total derivatives

�

⇧⇤
⇤A
⇤w

⇤A
⇤u

⇤S
⇤w

⇤S
⇤u

⇥

⌃⌅

T �

⇧⇤
⇥

�

⇥

⌃⌅ = �

�

⇧⇤
⇤f
⇤w
⇤f
⇤u

⇥

⌃⌅

⇤A

⇤w
⇥ = � ⇤f

⇤w
� ⇤S

⇤w
�̃

⇤S

⇤u
� = � ⇤f

⇤u
�⇤A

⇤u
⇥̃

df

dx
=

⇤f

⇤x
+ ⇥

⇤A

⇤x
+ �

⇤S

⇤x

Joaquim R. R. A. Martins (UTIAS) http://mdolab.utias.utoronto.ca 4 / 5

[Martins et al., Optimization and Engineering, 2005]

The coupled adjoint is the reason we require
the source code for each component

http://mdolab.engin.umich.edu/content/coupled-adjoint-sensitivity-analysis-method-high-fidelity-aero-structural-design-0
http://mdolab.engin.umich.edu/content/coupled-adjoint-sensitivity-analysis-method-high-fidelity-aero-structural-design-0

Let’s optimize a
wing!

• Common Research Model (CRM) from DPW4

• 2 million cells in CFD mesh

• Includes a structural model with 300 thousand DOFs

Optimization Problem Description

Common Research Model (CRM) geometry from DPW4
Boeing 777-200ER mission specification

Parameter Value Units

Cruise Mach number 0.85 -
Cruise lift coe�cient 0.5 -
Span 58.6 m
Aspect ratio 9.0 -
Reference wing area 383.7 m2

Sweep (Leading edge) 37.4 �

Maximum take-o↵ weight (MTOW) 298 000 kg
Operational empty weight 138 100 kg
Design range 7 725 nm
Design payload 34 000 kg
Reserve fuel 15 000 kg
Primary wing weight 25 400 kg
Secondary wing weight 8000 kg
Fixed weight 100 900 kg
Thrust specific fuel consumption (c) 0.53 lb/(lbf · h)

12 / 26

Chose the CRM geometry as a first
case

27

[Kenway, Kennedy and Martins, AIAA Journal, 2012 (forthcoming)]

The coupled adjoint is the key for
correct and efficient gradients

Number of Design Variables

N
o
rm

a
liz

e
d
T
im

e

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

400

Finite Difference
Adjoint

1.76 + 0.00004Nx

1.
0
+
0.
28
N x

•2M CFD cells

•300k CSM DOFs

•56 processors

•1 aerostructural
solution = 5.5 min

http://mdolab.engin.umich.edu/content/coupled-adjoint-sensitivity-analysis-method-high-fidelity-aero-structural-design-0
http://mdolab.engin.umich.edu/content/coupled-adjoint-sensitivity-analysis-method-high-fidelity-aero-structural-design-0

The baseline aircraft is similar to a 777-200ER

Design and Maneuver ConditionsDesign and Maneuver Conditions

Multi-point optimization considered a necessity in
transonic flow with su�cient design freedom

Group Identifier Mach Altitude, (ft) Load Factor

Cruise 1 0.85 35 000 1.0
2 0.84 35 000 1.0
3 0.86 35 000 1.0
4 0.85 34 000 1.0
5 0.85 36 000 1.0

Maneuver 1 0.86 20 000 2.5
2 0.85 32 000 1.3

Stability 1 0.85 35 000 1.0

Static margin estimate requires an additional flow analysis
to estimate derivatives CM↵ and CL↵

Kn = �CM↵

CL↵

.

14 / 26

Optimization Design Variables

12 global geometric
design variables

160 local shape design
variables

2.1 million cell CFD
mesh

1 angle of attack and 1
tail rotation angle for
each operating
condition

16 / 26

“Aerodynamic” shape variables also
affect the structure directly

Optimization Design Variables

288 thickness design
variables

300 000 structural
degrees of freedom

476 total design
variables

17 / 26

Structural sizing patchwork

Optimization Constraints

A variety of geometric constraints are required to produce
physically realistic designs
Lift and moment constraints at each cruise and maneuver
condition
Three Kreisselmeier–Steinhauser (KS) yield stress
constraint aggregation functions each maneuver condition

Geometric/target constraints Aerodynamic constraints Structural constraints

Description Quantity Description Quantity Description Quantity

tLE/tLEinit � 1.0 11 (L � W)cruise = 0.0 5 2.5 g Lower skin: KS 1.0 1
tTE/tTEinit � 1.0 11 Cmycruise

= 0.0 5 2.5 g Upper skin: KS 1.0 1

A/Ainit � 1.0 1 (L � W)Manvr. = 0.0 2 2.5 g Rib/spars: KS 1.0 1
V /Vinit � 1.0 1 CmyManvr.

= 0.0 2 1.3 g Lower skin: KS 0.42 1

tTE Spar � 0.20 5 Cruise Kn � 0.15 1 1.3 g Upper skin: KS 1.0 1
ttip/ttipinit � 0.5 5 1.3 g Rib/spars: KS 1.0 1

MAC-MAC⇤ = 0.0 1
XCG � X⇤

CG = 0.0 1

Total 36 Total 15 Total 6

Grand total 57

18 / 26

Need these constraints to make it
realistic (and probably more)

Don’t forget the fuel!Optimization Constraints

18 / 25

Parallelize, and then parallelize some
more

4

52

4

52

4

52

4

52

4

52

4

52

4

45

4

45

1

Structural Process

Aerodynamic Process

Friction Process

| {z }

Cruise Processes

| {z }
Stability Processes

| {z }

Maneuver

Processes

| {z }

Friction Processes

Total: 435 processors

Click here to see the video

http://mdolab.engin.umich.edu/content/movie-optimization-history-aerostructural-design-aircraft
http://mdolab.engin.umich.edu/content/movie-optimization-history-aerostructural-design-aircraft

Let’s see what
happened when we

minimized the TOGW...

At the same time, under the skin, the
structural sizing processors did their job

Let’s compare this
result with a fuel burn

minimization...

...with custom visualization!

Figure 12: Front view showing aerostructural deflections for the 2.5g maneuver condition (left) and cruise design point
1 (right)

section of the spar box where the thickness is greatest. The MTOW optimum shows locally increased thickness need
the yehudi break of the wing even with the large increase in t/c ratios we saw earlier. In order to support loading from
the span extension, the fuel burn results shown significantly increased thicknesses over the majority of the lower skin
and stringers.

Finally, Table 12 lists they key results from the optimizations. Drag reduction for all operating conditions for
both optimizations is achieved with the higher Mach number point (2) and the higher lift condition (5) resulting in the
largest improvements.

For the fuel burn optimization the drag lowered by 30%. As with the MTOW optimization, there is a reduction in
wave drag, but there is a much greater reduction in the induced drag due to the much higher aspect ratio. In fact, the
MTOW for the fuel burn optimization remained essentially unchanged and lift cruise lift constraints, imposed at the
midpoint of cruise are actually higher for the fuel burn case.

A weight breakdown of the primary structure sheds additional light on where the weight is saved for MTOW
optimization. The largest weight reduction is from the top and bottom skins and the lower stringers. For the lower skin
and stringers, maneuver load case 2 is critical. From Figure 11, even the 1 g cruise conditions have more heavily loaded
inboard lift distribution than the initial design. Since the 1.3 g lift distribution is similar to the cruise condition, we can
conclude the slight induced drag penalty from a more triangular lift distribution if offset by the weight reduction in
the lower skin and stringers. For the fuel burn optimization, we see weight increases across essentially all components
with the largest increases from the skins and rear spar. Given the reduced t/c ratio and increased span, these increases
are expected.

V. Conclusions
A framework for the analysis and optimization of high-fidelity aerostructural systems was presented. Two methods

for solving the nonlinear aerostructural systems were presented: a block Gauss–Seidel method with Aitken acceler-
ation and a fully coupled Newton–Krylov approach. Both methods perform well on our problem of interest, with
the Newton–Krylov method typically requiring 10% less computational time the traditional segregated, block Gauss–
Seidel method. A typical aerostructural solution with 2 million CFD cells and 300 000 structural degrees of freedom
can be obtained in under 3 minutes using 52 aerodynamic and 4 structural processors.

A coupled adjoint for the aerostructural equations was implemented that significantly improved on previous work.
By eliminating the inaccuracy and computational expense of finite-differencing for the off-diagonal terms, we are able
to solve much larger coupled adjoint systems with over 80 million degrees of freedom very efficiently. A tradition
linear block Gauss–Seidel method was compared with a new fully coupled Krylov method implementation on a 2
million cell CFD mesh and a 300 000 DOF structural mesh. We showed that the fully coupled solution method is
approximately 30% faster than the linear block Gauss–Seidel method with similar memory requirements.

A parallel scaling study demonstrated the techniques presented in the paper can be scaled to CFD problems with
over 16 millions cells and CSM discretizations with over one million degrees of freedom and approximately 100 000
coupling variables. A verification of the accuracy of the coupled adjoint method with the complex-step derivative
approximation showed excellent agreement with relative errors of O �

10

�5
�
.

Using the optimization framework, aerostructural optimizations were performed on the Common Research Model
geometry with a structure representative of a modern airliner wing. Multi-point optimizations with 5 cruise conditions
and 2 maneuver conditions were performed with a 2 million cell CFD mesh and 300 000 DOF structural mesh.
The optimization problems used 476 design variables and 57 constraints and required 36 hours of wall time on 435
processors.

29 of 36

American Institute of Aeronautics and Astronautics

(a) MTOW optimization

(b) Fuel burn optimization

Figure 15: Planform view with C

p

contours for both optimum designs for cruise condition 1. The initial design, on
left, is included for reference

35 of 36

American Institute of Aeronautics and Astronautics

(a) MTOW optimization

(b) Fuel burn optimization

Figure 15: Planform view with C

p

contours for both optimum designs for cruise condition 1. The initial design, on
left, is included for reference

35 of 36

American Institute of Aeronautics and Astronautics

[Kenway, Kennedy and Martins, AIAA SDM 2012]

http://mdolab.engin.umich.edu/content/scalable-parallel-approach-high-fidelity-aerostructural-analysis-and-optimization
http://mdolab.engin.umich.edu/content/scalable-parallel-approach-high-fidelity-aerostructural-analysis-and-optimization

41

Optimization Results

Iteration

M
a
s
s
,
K
g

D
ra
g
,
c
t

0 50 100 150
15000

20000

25000

30000

35000

40000

75

100

125

150

175

200

225

250

275

Mass
Pressure Drag
Skin Friction Drag
Total Drag

MTOW

Iteration

M
a
s
s
,
K
g

D
ra
g
,
c
t

0 50 100 150
15000

20000

25000

30000

35000

40000

75

100

125

150

175

200

225

250

275

Mass
Pressure Drag
Skin Friction Drag
Total Drag

Fuel Burn

History of mass, pressure drag and viscous drag

Significant di↵erence in resulting wing structural mass

21 / 25

[Kenway, Kennedy and Martins, AIAA SDM, 2012]

The tale of two objective functions

http://mdolab.engin.umich.edu/content/scalable-parallel-approach-high-fidelity-aerostructural-analysis-and-optimization
http://mdolab.engin.umich.edu/content/scalable-parallel-approach-high-fidelity-aerostructural-analysis-and-optimization

Composites

I ha
ve

jus
t o

ne

word fo
r y

ou:

[Flight International]

43

It’s taken decades, but composites finally
made it to commercial airplanes

44

Step aside CFD; meet the new
CPU hog

Model complexity

D
e
g
re
e
s
o
f
fr
e
e
d
o
m

10
2

10
4

10
6

10
8

10
10

10
12

Beam model

Shell model

Full 3D model

Metallic wing

Composite wing

Motivation
Lamination sequence design:

Determine a sequence of lamination angles
{✓

1

, ✓

2

, . . . , ✓

n

} to optimize structural performance

Issues:

Available ply angles may be limited to a discrete
set of values, ⇥ = {�45o, 0o, 45o, 90o}
Parametrization should handle design for strength,
buckling and sti↵ness

Constrain lamination sequence: matrix cracking

Common approaches:
Genetic algorithms
Discrete material optimization (DMO) – a SIMP-type method

Our proposed approach:
Use continuous design variable weights for a discrete set of angles
Use gradient-based optimization so we can handle large problems
Force the design towards a discrete solution with an exact penalty
function

2 / 24

How to tackle 1075 possible
lamination sequences

Wing box study
1 Initial sizing: mass-minimization using structural thicknesses, sti↵ener

geometry and lamination parameters
2 Layup design using the proposed parametrization technique:

maximize load factor with fixed sti↵ener geometry

Approximate planform of a
777-200 wing

Two maneuver conditions:
2.5g and -1g loads

Global-local approach:
local panel model with
discrete sti↵eners, global
model with smeared
sti↵eners

Global model contains 67 584, 3rd order MITC9 shell elements, with
just over 1.6 million degrees of freedom
64 processors: function evaluation: 30s, gradient using adjoint: 45s

20 / 24

Also developed a global-local
approach for wing box optimization

Wing box study continued
Lamination sequence:

Use a thick, guide laminate: changes in thickness accomplished by
removing outer-most layers

Group plies into 0o
2

, ±45o and 90o
2

No more than four contiguous 0o or 90o plies

The design problem:

157 plies, 472 design variables

30 KS failure and 30 KS
buckling constraints: 15 for
each load case

298 contiguity constraints

There are 3157 ⇡ 8⇥ 1074

possible sequences Iteration

L
o
a
d
fa
c
to
r
(λ
)

In
fe
a
s
ib
ili
ty

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.95

1

1.05

1.1

0

10

20

30

40

Load factor (λ)
Infeasibility

Optimization time: 39 hours 53 minutes on 64 processors

3230 function evaluations, 1101 gradient evaluations

21 / 24

40 hours later... we have an optimum

Wing box lamination sequence results

Symmetric laminates: sequence
from the middle to outer layer

�45o
0o

45o

90o

Top skin layup

1A
2A
3A

4A 5A

Bottom skin layup
1B

2B 1A 2A 3A 4A 5A 1B 2B
22 / 24

[Kennedy and Martins, AIAA SDM, 2012]

How these results stack up

http://mdolab.engin.umich.edu/content/regularized-discrete-laminate-parametrization-technique-applications-wing-box-design
http://mdolab.engin.umich.edu/content/regularized-discrete-laminate-parametrization-technique-applications-wing-box-design

Aerodynamic shape + Structural sizing + Control gains =

Aeroservoelastic Optimization

Why can’t we just all
work

together?

This aeroservoelastic optimization
considers maneuver and gust loads

Introduction Aeroservoelastic formulation Control System Design Control Integrated MDO Concluding remarks

Extended direct structure matrix (XDSM) for the
optimization problem

x

x⇤ 0,7!1:
Optimization

6 : S
wing

, AR, �
i

, t
i

, ⇢
rigid

, ⇢
elastic

2 : S
wing

, AR, �
i

3 : S
wing

, AR, t
i

5 : ⇢
rigid

, ⇢
elastic

7:
Endurance,
C

l,max

, �
i

6:

Endurance / �C
L

C
D

ln
W

initial

W
empty

Constraints:

8

>

<

>

:

KS (g (�
i

)) 0

KS (g (C
l

i

)) 0

h
err

 0.05

1,4!2:
MDA

2 : ⇠
target

L/D⇤ 6 : L/D
2:

Aerody-
namics

3 : f
e

5 : ↵
o

, �
e

o

W ⇤ 6 : W 4 : ⇠
3:

Structures
5 : ⇠

o

K⇤ 6 : A,B,C,D,K

5:
Flight

Dynamics
and

Control

1

33 / 39

Introduction Aeroservoelastic formulation Control System Design Control Integrated MDO Concluding remarks

Optimization results

Optimization results with and without load alleviation system.

Load alleviation O↵ On
Sref (m2) 219.18 191.47 14.5% smaller
AR 13.98 14.03
L/D 34.29 34.37
qelastic 1499.95 1499.88
qrigid 90.63 75.71
Wing mass (kg) 13,378 7,817 41.5% lighter
Endurance factor 31.90 38.83 21.7% higher

34 / 39

Aeroservoelastic optimum was
significantly better than the
aerostructural one...

Introduction Aeroservoelastic formulation Control System Design Control Integrated MDO Concluding remarks

Thickness and twist distribution

0 1
4(b/2) 1

2(b/2) 3
4(b/2) b/2

0.02

0.04

0.06

0.08

0.10

t s
pa

r
(m

)

Load Alleviation: ON
Load Alleviation: OFF

0 1
4(b/2) 1

2(b/2) 3
4(b/2) b/2

Span position

�8

�6

�4

�2

0

2

�
(d

eg
)

35 / 39

... but the aerostructural optimization
found it’s own way to alleviate loads

[Haghighat and Martins, Journal of Aircraft, 2012]

http://mdolab.engin.umich.edu/content/aeroservoelastic-design-optimization-flexible-wing
http://mdolab.engin.umich.edu/content/aeroservoelastic-design-optimization-flexible-wing

CAD-free
(but CAD-friendly)

Geometry

GeoMACH
Motivation
Aircraft Model
Parameters
Multidisciplinary
Design
Optimization
Expected
Significance

Old Slides
Use Case
Work Plan
GeoMACH
Parametric
Modeler

Use Case

Optimization
Manual
design

Select
configuration

Define opt.
problem

Specify
parameters

Run
analysis

Interpret
results

Export to
EGADS

Update
models

Perform
optimization

54

GeoMACH is a NASA-funded
open-source project to handle parametric aircraft
geometry

55

x

p

x

o

x

m

Propulsion
OML

modeler
x

s Materials

P

a

Mesh
movement

P̄

a

B-Spline
evaluation

C

o

B-Spline
evaluation

P̄

s

Structural
modeler

P

s

CFD ū

a

B-Spline
evaluation

C

w

B-Spline
evaluation

w̄

s

FEA

w

a

Extract
OML part

w̄

a

B-Spline
fit

C

s

B-Spline
fit

ū

s

Extract
OML part

u

s

CFD mesh CFD surf. mesh Continuous OML FEA surf. mesh FEA mesh

Quantities on the CFD mesh
P

a

CFD mesh coordinates
P̄

a

Subset of CFD mesh points
that are on the OML

w

a

Aerodynamic states on the
CFD mesh

w̄

a

Aerodynamic states on the
OML part of the CFD mesh

ū

a

Structural states on the
OML part of the CFD mesh

Neutral quantities
x

p

Propulsion DVs
x

o

OML (shape) DVs
x

s

Structural DVs
x

m

Material DVs
C

o

B-spline control points
for the OML

C

w

Control points for the
interpolated aero. states

C

s

Control points for the
interpolated str. states

Quantifies on the FEA mesh
P

s

FEA mesh coordinates
P̄

s

Subset of FEA mesh points
that are on the OML

u

s

Structural states on the
FEA mesh

ū

s

Structural states on the
OML part of the FEA mesh

w̄

s

Aerodynamic states on the
OML part of the CFD mesh

Figure 2: Data flow diagram showing GeoMACH’s proposed architecture. Each variable shown is a vector of quanti-
ties, where x represents design variables, P represents discrete surface or mesh points, C represents B-spline control
points, u represents structural states (displacement and rotations), and w represents aerodynamic states (pressures,
momentums, etc.). The subscript p represents propulsion, o represents OML, m represents materials, a represents
aerodynamics, and s represents structures.

III. B-Spline Engine
A core aspect of GeoMACH’s approach to MDAO is the use of B-splines for representing geometry, using an

efficient, light-weight B-spline engine. A B-spline is a piecewise defined polynomial function whose degree and
smoothness can be specified. B-spline curves represent the generalization of Bezier curves in a manner similar to the
way splines generalize Lagrange interpolants — using piecewise functions to allow a lower degree. As such, they
smoothly approximate a set of control points, which suggests their utility in fitting discrete curves, surfaces, etc. with
fewer degrees of freedom. A useful characteristic is that the B-splines are splines of minimal support [19]; therefore,
each row of the Jacobian of evaluated points with respect to control points has a fixed and small number of non-zero
entries. B-spline surfaces, volumes, etc. can be formed by multiplying together B-spline functions in each parametric
direction — these are known as tensor-product B-splines.

There are many reasons why B-splines are well-suited for geometric modeling, but five are particularly relevant
here. First, they are accurate because they have analytical definitions that allow them to easily support perfectly
watertight geometries through exact union of patches. Second, B-splines have direct, analytical definitions and the
fact that they are piecewise polynomials is attractive because their evaluation involves only arithmetic operations
as opposed to elementary functions. Third, the derivatives of B-splines with respect to parameters are analytically
defined, and they are linear in the control points, yielding both accuracy and efficiency. Finally, the fact that a B-spline
has a small support means that the Jacobian of evaluated points with respect to the control points is sparse.

GeoMACH’s B-spline engine treats the entire patchwork of B-spline surfaces as a single continuous entity. It
stores and works with a unique list of points and control points as shared edges and vertices point to the same elements.
Figure 3 illustrates how this guarantees that the model stays watertight. In GeoMACH, the B-spline surfaces use open

6 of 18

American Institute of Aeronautics and Astronautics

in the surveyed geometry engines. Furthermore, the need to compute intersections can be avoided through the use of
interpolating surfaces that enforce the desired level of continuity. More details are given in Section IV.

C. Architecture
The high-fidelity optimization algorithms discussed in Section I cover the aerodynamics, structures, materials, and
controls disciplines. In conceptual design and the early parts of preliminary design, these are arguably the driving
disciplines that must be considered at this level because of their strong coupling to each other. Weight is another driving
factor in the design of the airframe, and propulsion-airframe coupling also becomes significant in a configuration-level
design space.

Based on the requirement of supporting high-fidelity MDAO with many variables, GeoMACH makes a number
of assumptions about the types of analysis tools that will be used with the framework. As mentioned previously, it is
assumed that the CFD solver uses structured multi-block grids that are driven by mesh movement algorithms that com-
bine the algebraic and linear elasticity-based approaches [15], [16]. The structural solver must handle shell elements
as GeoMACH models the aircraft as a thin-walled structure. A materials component is planned to be integrated in
the framework, with a library of material types including laminated, textile, and sandwich composites. The approach
is to develop and implement micromechanical models that parametrically give the shell stiffness matrices in terms of
the material design variables. An example of such a model derived through homogenization for a textile composite
is given in [17]. For propulsion-airframe coupling, an inexpensive approach is to a 0-D model for the engine and
parametrizing the boundary conditions on the inlet and outlet surfaces of the CFD grid based on the output from this
model. For controls, a first approximation is to enforce static stability using a finite-difference approximation for the
derivative of the moment coefficient with respect to angle of attack. In each discipline, alternate approaches are possi-
ble as long as their outputs vary smoothly and they are compatible with high-fidelity MDAO. Figure 1 shows that each
discipline interacts with the aircraft geometry through either the OML or structural model.

Geometry

Structural
model

Structures

Materials

Weights

OML model

Aero-

dynamics

Stability

Propulsion

Figure 1: Illustration of how each discipline interacts with the geometry. The aerodynamic mesh is linked to the
OML model through the mesh movement algorithm. Stability coefficients and their derivatives are computed by the
flow solver, and the computed quantities from the propulsion model determine the inlet and outlet CFD boundary
conditions. The materials discipline provides stiffness matrices for the shell elements used in the structural analysis,
and a significant portion of the weight build-up depends on the airframe.

GeoMACH’s efficient B-spline engine contains much of the machinery which handles interaction between disci-
plines and data transfers between disparate models. The B-spline engine is described later, in Section III. However,
the architecture and organization of components is shown in Figure 2.

Since B-splines are linear in the control points, they allow a simple and efficient implementation for forward and
inverse evaluation. In Figure 2, the B-spline engine plays two important roles. First, they provide a continuous,
discipline-independent representation of the OML. The parametric OML modeler accepts shape design variables as
input and computes the appropriate values for the OML control points to achieve the desired shape. The shape design
variables can be as high-level as span or sweep, or as fine as the perturbation of an individual control point. Next, two
pre-computed matrices map the OML control points to the vector of CFD mesh points or FEA mesh points that lie on
the OML. In the case of CFD, the B-spline Jacobian matrix can be computed extracting the OML points of a manually
created CFD mesh and passing it to GeoMACH’s B-spline engine. It would then perform inverse evaluations to find

4 of 18

American Institute of Aeronautics and Astronautics

OML modeler developed with
multidisciplinary derivatives in mind

56

13 self.addComp(’pylonwing’, FullInterface(self.comps, ’pylon’, 1, ’wing’, 1, [2,1], [0,2]))
self.addComp(’finfuse’, HalfInterface(self.comps, ’fin’, 0, ’fuse’, 1, [0,8], [0,10]))

15

self.assembleComponents()

This aspect of the OML modeler’s design is what allows it to satisfy the requirements described in IV, as separating
the conceptual design space into discrete configurations allows the full space to be spanned using only three types of
components. Each component can then be given a robust and versatile parametrization that is both detailed and allows
control with only a few high-level parameters if so desired. Figure 5 shows how the influence of each component’s
shape design variables combines with the others to parametrize a common OML model.

Conventional with winglets D8

Strut-braced wing Joined wing

Figure 4: Four aircraft models of four different configurations produced using GeoMACH’s OML modeler. Each one
is defined by only tens of lines of codes.

9 of 18

American Institute of Aeronautics and Astronautics

Parametric aircraft configurations
can be created with 10–20 lines of
code

57

CFD grid for each configuration

58

Figure 6: The tail-fuselage junction in a conventional aircraft. The colored surfaces are those that belong to the
junction component.

engine maps the OML control points to the structural surface mesh, and the Jacobian computed by the structural
modeler maps the structural surface mesh to the full structural mesh. The two sections that follow describe the
computation of the skin layout and the generation of the internal structure.

A. Skin Layout Generation
The skin for each component must contain edges at each location where an internal structural member in addition to
boundaries of junctions. Further, the domain must be a tessellation of quadrilaterals so that it can be populated with
shell elements. Figure 7 shows how this tessellation can be computed from an arbitrary distribution of edges, given
in 7(a). The first step is to compute all intersections between edges and creating vertices at the intersection points,
yielding 7(b). Vertices that are floating in space must be dealt with to be able to identify polygons in a meaningful
way. The approach used to generate 7(c) is to loop through the vertices and add edges in the 0�, 90�, 180�, and 270�, if
there are not already edges in the [�45�,45�], [45�,135�], [135�,225�], and [225�,315�] quadrants, respectively. This
process guarantees that the domain is covered fully by convex polygons with no more than five sides. Next, pentagons
are split to obtain 7(d), and triangles are split into three quadrilaterals to obtain 7(e). This final layout has a relatively
large number of quads, which is undesirable; however, this is due to the initial distribution of edges. If the one irregular
edge is removed from 7(a), the final result has much fewer quadrilaterals as shown in 7(f).

B. Internal Structure Generation
With the skin layout computed, each quadrilateral can be divided into shell elements with the desired mesh resolution.
The nodes are projected onto the OML and the B-spline basis functions are evaluated at the projected points to obtain
a mapping from the OML control points to the structural surface mesh. The next step is to find the mapping from
the structural surface mesh to the full structural mesh. This means that each node in the internal structure must be
parametrized in terms of one or more nodes on the skin.

The approach is to specify the desired internal structure in a 3-D volume, whose top and bottom faces are mapped to
parts of the structural surface mesh. The details are best explained through an example, which is given in Figure 8. The
wing structure on the right has ribs and two main spars with holes removed as well as stiffeners for the upper and lower
skins with L-shape cross-sections. The parametric generation of complex structures such as this is greatly simplified
using a 3-step process. First, a list of (u0, v0) coordinates are computed for each member: for example, a square with a
round hole. Next, these (u0, v0) coordinates are mapped to (u, v, w)-space based on the specified structural layout for
the component. This involves the evaluation of a bilinear interpolant at locations given by (u0, v0) and corner vertices
given by the coordinates of the element’s nodes in (u, v, w)-space. Finally, the (u, v, w) coordinates are mapped to the
(x, y, z) coordinates in physical space. To do this, the four nearest nodes in the skin layout are found. The parametric

12 of 18

American Institute of Aeronautics and Astronautics

The devil is in the junctions

59

Figure 9: Wing and fuselage structures for the conventional configuration.

Figure 10 shows the conventional configuration with structures for the fuselage, wing, and tail modeled. The code
for specifying the fuselage and wing structures in the conventional aircraft is shown below.

1 c[’fuse’].addMembers(’Longerons’, 2, 1, 12, 15, A1=[0,0,0.95], C1=[1,0,1], A2=[0,1,0.95], C2
=[1,1,1])

c[’fuse’].addMembers(’Frames’, 2, 2, 16, 11, A1=[0,0,0.85], C1=[0,1,1], A2=[1,0,0.85], C2
=[1,1,1])

c[’wing’].addMembers(’RibsLE’, 1, 1, 13, 1, A1=[0,0,0], C1=[0,0.125,1], A2=[1,0,0], C2
=[1,0.125,1])

2 c[’wing’].addMembers(’Ribs’, 1, 2, 13, 5, A1=[0,0.125,0], C1=[0,0.75,1], A2=[1,0.125,0], C2
=[1,0.75,1])

c[’wing’].addMembers(’RibsTE’, 1, 1, 13, 1, A1=[0,0.75,0], C1=[0,1,1], A2=[1,0.75,0], C2=[1,1,1])
4 c[’wing’].addMembers(’Spars’, 1, 2, 2, 12, A1=[0,0.125,0], C1=[1,0.125,1], A2=[0,0.75,0], C2

=[1,0.75,1])
c[’wing’].addMembers(’Ustiff’, 1, 1, 4, 12, A1=[0,0.25,0.9], C1=[1,0.25,1], A2=[0,0.625,0.9], C2

=[1,0.625,1])
6 c[’wing’].addMembers(’UstiffL’, 1, 1, 4, 12, A1=[0,0.25,0.9], B1=[0,0.255,0.9], C1=[1,0.255,0.9],

D1=[1,0.25,0.9], A2=[0,0.625,0.9], B2=[0,0.63,0.9], C2=[1,0.63,0.9], D2=[1,0.625,0.9])
c[’wing’].addMembers(’Lstiff’, 1, 1, 4, 12, A1=[0,0.25,0], C1=[1,0.25,0.1], A2=[0,0.625,0], C2

=[1,0.625,0.1])
8 c[’wing’].addMembers(’LstiffL’, 1, 1, 4, 12, A1=[0,0.25,0.1], B1=[0,0.255,0.1], C1=[1,0.255,0.1],

D1=[1,0.25,0.1], A2=[0,0.625,0.1], B2=[0,0.63,0.1], C2=[1,0.63,0.1], D2=[1,0.625,0.1])

A significant challenge for modeling the entire structure of an airplane with multiple components is that the num-
ber of edges at locations where components intersect may not match. The proposed solution is to use the junction
components as a buffer. O-gridding and other similar concepts can be applied to overcome the fact that the number of
edges entering the junction from one side differs from the number of edges entering from the opposite side.

VI. Conclusion
The premise of this paper is that the commercial aircraft design process stands to benefit tremendously if high-

fidelity single- and multi-disciplinary optimization with many variables can be properly leveraged. State-of-the-art
optimization algorithms are capable of handling hundreds, up to thousands of design variables with multiple disciplines
coupled. Yet, their applicability to practical design is hindered by the lack of a configuration-level geometry modeler
and a framework to handle integration of codes. Many aircraft design tools and geometry engines can be found in the

15 of 18

American Institute of Aeronautics and Astronautics

In addition to the OML, we also
generate the internal structure

60

[Hwang and Martins, AIAA MA&O, 2012]

Morphing video

Thanks to my minions heroes

Sandy Mader

Gaetan Kenway Graeme Kennedy

John Hwang

Sohrab Haghighat

Thank you!

http://mdolab.engin.umich.edu/publications

http://mdolab.engin.umich.edu/publications
http://mdolab.engin.umich.edu/publications

