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• D: statistical weighting 
• U(x): image regularization 

Error Sinogram (Ax-y) 

Fwd Model f(x) = Ax 
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 Fast and accurate projection of 3D voxels 
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B. DeMan and S. Basu, “Distance-driven projection and backprojection in three-dimensions,” Physics in Medicine and 
Biology, vol. 49, pp. 2463–2475, 2004. 

Jean-Baptiste Thibault, Ken Sauer, Charles Bouman, and Jiang Hsieh, “A Three-Dimensional Statistical Approach to 
Improved Image Quality for Multi-Slice Helical CT,” Medical Physics, pp. 4526-4544, vol. 34, no. 11, November 2007. 
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•  3D regularization using 26 neighbors 
•  Design to: 

•  Preserve high contrast edges 
•  Enhance low contrast sensitivity 

•  Q-GGMRF  
•  Convex for  
•  Behaves like xp for |x| small 
•  Behaves like xq for |x| large 

U x( ) = 1
pσ p ρ(x j − xk )

j ,k{ }∈C
∑

Image x 

Model: p(x) 

ρ(Δ) = Δ “Compressed sensing” 

ρ(Δ) = Δ p

where p = 1.2
Generalized Gaussian MRF 

ρ(Δ) =
Δ q

1+ Δ / 50 q− p  

with p = 1.2 and q = 2

Q-GGMRF 

1 ≤ q ≤ p ≤ 2

Jean-Baptiste Thibault, Ken Sauer, Charles Bouman, and Jiang Hsieh, “A Three-Dimensional Statistical Approach to 
Improved Image Quality for Multi-Slice Helical CT,” Medical Physics, pp. 4526-4544, vol. 34, no. 11, November 2007. 
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  Multislice helical scan computed tomgraphic (CT) imaging 
–  Estimated 72 million CT scans in the US in 2007. 
–  Dramatic increase has virtually eliminated the need for “exploratory surgery”. 
–  Since inception, commercial scanners have used filtered back projection (FBP). 
–  Cumulative X-ray dosage from CT of growing concern. 

  Model-Based Iterative Reconstruction (MBIR) 
–  Compute the “best” reconstruction given the data and known statistics of images. 
–  Uses iterative process to fit reconstruction to measurements. 

  GE Healthcare Veo product - “I see” in Spanish 
–  GE Healthcare’s commercial software/hardware implementation of MBIR 
–  On sale in Europe - http://radiologynews.gehealthcare.com/en/computed/pm/detail/0/200/4/veo-.html 
–  Pending FDA 510(k) review for use in the US. 
–  Dosage reduction of ~4x 
–  Research performed in collaboration with: 

Ken Sauer, University of Notre Dame 
Jean-Baptiste Thibault, GE Healthcare 
Jiang Hsieh, GE Healthcare 
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•  Some key publications: 
K. Sauer and C. Bouman, “A Local Update Strategy for Iterative Reconstruction from Projections,” IEEE Trans. on Sig. Proc., 
vol. 41, no. 2, pp. 534-548, Feb. 1993. 
C. A. Bouman and K. Sauer, “A Unified Approach to Statistical Tomography using Coordinate Descent Optimization,” IEEE 
Trans. on Image Processing, vol. 5, no. 3, pp. 480-492, March 1996. 
J.-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh, “A Three-Dimensional Statistical Approach to Improved Image Quality for 
Multi-Slice Helical CT,” Medical Physics, pp. 4526-4544, vol. 34, no. 11, November 2007. 

•  Issued patents:   

1.  J. Hsieh, J.-B. Thibault, C. A. Bouman, and K. Sauer, “An Iterative Method for Region-of-Interest Reconstruction,” US Pat. 
6,768,782, July 27, 2004. 

2.  9. K. Sauer, C. A. Bouman, J.-B. Thibault, and J. Hsieh, “Iterative Reconstruction Methods for Multi-Slice CT,” US Pat. 
6,907,102, June 14, 2005. 

3.  K. D. Sauer, J.-B. Thibault, C. A. Bouman, and J. Hsieh, “Methods, Apparatus, and Software to Facilitate Iterative 
Reconstruction of Images,” US Pat. 7,251,306, July 31, 2007. 

4.  J.-B. Thibault, K. D. Sauer, C. A. Bouman, and J. Hsieh, “Methods, Apparatus, and Software to Facilitate Computing the 
Elements of a Forward Projection Matrix,” US Pat. 7,272,205, Sep. 18, 2007. 

5.  C. A. Bouman, K. D. Sauer, J. Hsieh, and J.-B. Thibault, “Methods, Apparatus, and Software for Reconstructing an Image,” 
US Pat. 7,308,071, Dec. 11, 2007. 

6.  K. D. Sauer, J.-B. Thibault, C. A. Bouman, and J. Hsieh, “Method, Apparatus, and Software for Reconstructing an Image,” US 
Pat. 7,327,822, Feb. 5, 2008.  

7.  J. Hsieh, C. A. Bouman, K. D. Sauer, and J.-B. Thibault, “Methods, Apparatus, and Software for Failed or Degraded 
Components,” US Pat. 7,440,602, Oct. 21, 2008. 

8.  J. Hsieh, J.-B. Thibault, K. D. Sauer, and C. A. Bouman, “Method and System for Improving a Resolution of an Image,” US 
Pat. 7,583,780, Sept. 1, 2009. 

9.  K. D. Sauer, C. A. Bouman, J. Hsieh, and J.-B. Thibault, “Systems and Methods for Filtering Data in Medical Imaging 
Systems,” US Pat. 7,676,074, Mar. 9, 2010. 

10. K. D. Sauer, C. A. Bouman, J. Hsieh, and J.-B. Thibault, “Method and System for Image Reconstruction,” US Pat. 7,885,371, 
Feb. 8, 2011. 
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FBP Reconstruction MBIR/Veo Reconstruction 

360m
m

 

Routine abdomen pelvis  
Dose - 0.77 mSv* 

FBP 

MBIR/Veo 

DLP 45, 0.625 mm 
100 kVp, 37–51 mA,  
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WW 2000 WL 400 

WW 350 WL 50 Standard algorithm 

Bone Plus algorithm 

FBP Reconstruction MBIR/Veo Reconstruction 

High resolution with low noise   
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Improving resolution & contrast 

FBP MBIR/Veo 
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FBP Reconstruction MBIR/Veo Reconstruction 

Improved detail 
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Routine abdomen pelvis  
Dose - 0.6 mSv 

DLP 35, 0.625 mm 
100 kVp, 25-38 mA 

395m
m

 

FBP Reconstruction MBIR/Veo Reconstruction 
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Source: Health Physics Society. 
http://www.hps.org/publicinformation/ate/q2372.html 

Routine chest CT  
at chest X-ray dose - 0.09 mSv  

DLP 6.3, 0.625 mm 
100 kVp, 10 mA 

FBP Reconstruction MBIR/Veo Reconstruction 

“Typical CXR effective dose is about 0.06 mSv.” 
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Routine head  
ultra low dose - 0.5 mSv* 

FBP MBIR/Veo 

241 DLP, 0.625 mm 
120 kVp, NI 3.0 (120-226 mA)  
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MBIR Reconstruction ASiR Reconstruction 

Free fluid/Blood in 
abdomen seen 
more clearly 

Bladder 
better 
visualized 

Images courtesy of The Queen Silvia Children’s 
Hospital 
Dr. Stålhammar 

Pediatric trauma, 120kV, 52-70mA, 0.4s/rot, 0.625mm, WW 
300 WL 50  

Liver laceration 
better defined 
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MBIR Reconstruction ASiR Reconstruction 

Images courtesy of The Queen Silvia Children’s 
Hospital 
Dr. Stålhammar 

Pediatric trauma, 120kV, 52-70mA, 0.4s/rot, 0.625mm, WW 
300 WL 50  
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FBP Reconstruction MBIR Reconstruction 

Adrenal nodule 

Images courtesy of Dr Gladys Lo 

kV 120, mA 150, 0.5s, 0.625mm, WW 350 WL 50 DFOV 42 Standard kernel in FBP 
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   Darkfield STEM 
•  High Angle Annular Dark Field (HAADF) 
•  Tilt axis parallel beam tomography 
•  Obeys emission tomography forward model  

 X-Ray Microscopic Imaging 
•  Axial cone beam tomography problem 
•  Obeys transmission tomography forward model 

 Prior modeling of materials 
•  MRF models 
•  Sparse manifold methods 

 Time varying tomography 
•  Reconstruction from sparse measurements 
•  Imaging dislocation structures 
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 Acquisition 
 An electron beam is focused at a point on 

the sample. 
 An annular ring detects elastically scattered 

electrons, but angle is small. 
 Geometry 

 Electron beam is scanned across sample 
 Sample is tilted in one axis 
 Results in 2D parallel beam data 
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Attenuation of unscattered beam 

Attenuation of scattered beam 

Combing expressions 

Im = IT s z( )dz
0

T

∫
s z( ) = σ z( )N z( )

Scattering coefficient: 

µ z( )
Attenuation coefficient: 

So for homogeneous case with   
[Pennycook,1986], we have 

Im = ITσNT

µ z( ) = 0
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 Follows emission tomography equations 
•  Im is Poisson so 

•  IT must be determined through calibration or estimation 

 MAP reconstruction is given by 

where 

E Im[ ] = Var Im[ ] = IT s z( )dz
0

T

∫

 

x = argmin
x≥0

y − Ax( )t Λ y − Ax( ) + S x( ){ }

yi = Im,i and Λi,i =
1
Im,i
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 Geometry 
•  X-ray source forms cone-beam 
•  Axial rotation provides 3D data 

 Acquisition 
•  Measurements are Poisson 
•  Beer’s law can be used to compute density integral 

Imaging array 

E λi[ ] = λ0,i exp − µ r( )dr
0

T

∫
⎛

⎝⎜
⎞

⎠⎟
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 Follows transmission tomography equations 
•       is Poisson 
•         must be determined through calibration or estimation 

 MAP reconstruction is given by 

where 
 

x = argmin
x≥0

y − Ax( )t Λ y − Ax( ) + S x( ){ }

yi = − log λi
λ0,i

⎛

⎝⎜
⎞
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λi
λ0,i
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   Enormous amount of structure to exploit 
•  Repeated morphology 
•  Thin manifolds 
•  Underlying physics 

 How can this be effectively modeled? 
•  Markov random field (MRF) priors 
•  Sparse subspaces using over-complete bases 
•  Dictonary-based learning 
•  Manifold learning 
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 Assumptions 
•  Time varying structure 
•  Time varying measurements 

 Sparse reconstruction 
•  Number of additional unknowns is small 
•  Reconstruction only requires a small number of additional measurements 

Dislocation 

electron beam 
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 Implement MAP reconstruction for HAADF 
tomography 

 Develop prior models for real materials 

 Formulate time varying reconstruction problem 


