
Automated segmentation of
microstructures using the SIDE algorithm

School of Electrical and Computer
Engineering

Purdue University
04/08/2011

SIDE for image segmentation

•  SIDE (Stabilized Inverse Diffusion Equations)
algorithm
–  Evolve feature vectors that are vectorial

representation of some specific region over a scale
space

–  This evolution forms a region merging process for
image segmentation

–  The direction of the evolution is driven by minimizing
an energy functional along its gradient

Energy functional

•  The energy functional is the objective function
for SIDE evolution, trying to minimize:

€

ε = b(Ri,R j)E(µi − µ j)
{Ri ,R j }∈NBR −PRS

∑ (1)

where

€

Ri is a region (set of connected pixels) of the image
µi is the vector intensity for region Ri

NBR − PRS denotes the set of all pairs of neighbor regions
b(Ri,R j) is a design parameter

E(x) = x which denotes a SIDE energy function

Velocity of the gradient descent

•  The following PDE describes the evolution of the
intensity for Region i

€

˙ µ i(t) =
1

a(Ri)
b(Ri,R j)⋅

µ j − µi

µ j − µi

⋅ ʹ′ E (µ j − µi)
R j ∈NBRS(Ri)
∑ (2)

where

Original SIDE algorithm

1.  Initialize all pixels as individual regions, set t=0	

2.  Evolve all feature vectors, until t = tmerge,

according to (2)	

3.  Merge two neighboring regions if

4.  If a predetermined number of regions is
reached, then stop; otherwise update functions
a(⋅) and b(⋅,⋅), increase tmerge, and repeat Steps
2-3
€

µi(t) − µ j (t) < ε for some small ε

Design parameters

•  In the original algorithm, design parameters are
defined as follows for segmentation of natural
images:
–  a(Ri) is some function of the region size |Ri|	

–  b(Ri, Rj) is the length of boundary between Ri and Rj	

Modifications of the SIDE algorithm

•  Intensity penalty
•  Boundary length penalty
•  Boundary curvature penalty
•  Stopping rule

Intensity penalty

•  Modify the original energy functional by including
an additional term to penalize the evolution of a
vector intensity too far from some desired state:

€

ε = (1− λ) b(Ri,R j)E(µi − µ j)
{Ri ,R j }∈NBR −PRS

∑ + λ G(µi
DES − µi)

Ri

∑ (3)

where

€

λ is the weighting factor for the energy function G(x)

G(x) =
1
2
x 2 defines the cost of intensity difference x

Intensity penalty (cont’d)

•  To find the desired states, we use a scalar
feature µi and initialize it with the pixel intensity
yi. Then a clustering is performed to approximate
the distribution of pixel intensity to a Gaussian
mixture model:

€

f(y) ≈ ?kN(mk,?k;y)
k=1

K

∑

Intensity penalty (cont’d)

•  The desired state is determined by the
Mahalanobis distance between the scalar
feature and its closest mixture mean:

€

µi
DES ≡ argmin

mk

µi −mk

σ k

Boundary length penalty

•  To remedy a segmentation issue with
excessively long boundaries from original SIDE
algorithm

•  Modified function b(⋅,⋅) defined as:

€

b(Ri,R j) = (boundary length)η

Boundary curvature penalty

•  Given a continuous curve c(t)=(x(t),y(t)), the
curvature κ(t) can be defined as:

•  The average curvature over a curve of length T
can then be defined as:

Boundary curvature penalty (cont’d)

•  To include the boundary curvature penalty, a
realization is to modify the function b(⋅, ⋅):

where

Boundary curvature penalty (cont’d)

•  Unfortunately, the computation of curvature in
discrete domain is ill-posed
–  For example, computed curvature for a 45° straight

line may produce multiple nonzero values
•  For a discrete pixel on a curve c[n], an efficient

and robust way to estimate curvature is to fit a
smooth parabola through c[n-n0], c[n], and c[n
+n0], and compute the curvature of the parabola
using (8) [Hermann06]
–  n0=5 is empirically found useful for IN-100 dataset

Experimental results

•  Segmentation of MNML alloy
•  Segmentation of IN100 alloy
•  Segmentation of Rene88 alloy

Segmentation of MNML alloy

Segmentation procedure

1.  Background isolation by fitting a bimodal
Gaussian to the intensity histogram; scale the
background standard deviation with σ1100σ1	

2.  Segment the foreground (two classes) with
λ=0.99 (intensity penalty weight) using a bimodal
Gaussian and η=2 (boundary length penalty
exponent)	

3.  Stopping rule: stop when 500 gradient descent
iterations evolve without any regions begin
merged

Results—λ=0.5(intensity penalty)

Results—λ=0.99(intensity penalty)

Results—η=1(boundary length penalty)

Results—η=2(boundary length penalty)

Segmentation of IN100 alloy

Segmentation procedure

1.  Due to the large range of pixel intensity values,
λ is set to zero in this segmentation

2.  Set η=2, κ1=κ2=0.2, and T1=0.1, T2=10 for
boundary curvature penalty

3.  Stopping rule: by observing that the energy
functional of this segmentation decreases
exponentially, we locate the termination as the
point of maximum derivative of energy evolution

–  Not particularly robust and new methods could be
investigated

Results—η=1(boundary length penalty)

Results—η=2(boundary length penalty)

Results—without boundary curvature
penalty

Results—without boundary curvature
penalty

Results—with boundary curvature penalty

Segmentation of Rene88 alloy

Segmentation procedure

•  Two stage segmentation each with specific
parameter setting for different features
–  Stage 1: segmentation of large blocks (or large

regions)
–  Stage 2: segmentation of particles (or small regions)

Segmentation of large regions

1.  Set λ=0.85 and η=1 for intensity and boundary
length penalties, respectively	

2.  Set κ1=κ2=0.15, T1=0.1 and T2=10 for boundary
curvature penalty

3.  Set a(Ri)=|Ri| when region mass |Ri|>5000 and a
(Ri) = 0.05 otherwise

4.  Stopping rule: find the number of regions
smaller than 40 in which SIDE spent the largest
number of iterations without a merge

Segmentation of large regions—results

Segmentation of large regions—results

Segmentation of large regions—results

Segmentation of large regions—results

Segmentation of large regions—results

Segmentation of small regions

•  Segmenting large regions individually for finding
small regions
–  Some large regions contain no small regions, and so

we can use a bimodal Gaussian mixture to fit
histogram of pixel data within the large region. If one
mode is significantly smaller than the other(π1<0.1 or
π2<0.1), then stop; otherwise continue

Segmentation of small regions (cont’d)

•  For each large region containing small regions, we
use a region-based initialization
–  Classify each pixel into one of the two classes using an ML

estimator with a bimodal Gaussian mixture model
–  Initialize the segmentation regions Ri as contiguous

collections of neighboring pixels with the same label, and
initialize the scalar feature µi as the sample mean of the
pixel intensities within Ri

•  Set λ=0.95,η=1, and use no boundary curvature
penalty

•  Stopping rule: stop when 500 gradient descent
iterations evolve without any regions being merged

Results—complete segmentation

Results—complete segmentation

Results—complete segmentation

Results—complete segmentation

Results—complete segmentation

Summary

MNML-3 IN100 Rene88

Intensity Penalty
Very useful, as there
are only three
different intensities.

Probably not usable
for IN100, as there
are too many
different intensities.

Very useful, as there
are only two different
intensities.

Boundary length
penalty

Useful. Useful. Useful.

Boundary
smoothness

penalty

Very useful, to
ensure the
smoothness of
boundaries of the
circular regions.

Useful, to avoid
fractal-like
boundaries.

Very useful,
especially in the
large-region
segmentation stage,
to identify long
straight twin
boundaries.

Stopping rule Useful. Useful. Useful.

