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SIDE for image segmentation 

•  SIDE (Stabilized Inverse Diffusion Equations) 
algorithm 
–  Evolve feature vectors that are vectorial 

representation of some specific region over a scale 
space 

–  This evolution forms a region merging process for 
image segmentation 

–  The direction of the evolution is driven by minimizing 
an energy functional along its gradient 



Energy functional 

•  The energy functional is the objective function 
for SIDE evolution, trying to minimize: 

€ 

ε = b(Ri,R j )E( µi − µ j )
{Ri ,R j }∈NBR −PRS

∑         (1)

where 

€ 

Ri  is a region (set of connected pixels) of the image
µi  is the vector intensity for region Ri

NBR − PRS  denotes the set of all pairs of neighbor regions
b(Ri,R j )  is a design parameter

E(x) = x   which denotes a SIDE energy function



Velocity of the gradient descent 

•  The following PDE describes the evolution of the 
intensity for Region i 

€ 

˙ µ i(t) =
1

a(Ri)
b(Ri,R j )⋅

µ j − µi

µ j − µi

⋅ ʹ′ E ( µ j − µi )
R j ∈NBRS(Ri )
∑         (2)

where 



Original SIDE algorithm 

1.  Initialize all pixels as individual regions, set t=0	


2.  Evolve all feature vectors, until t = tmerge, 

according to (2)	


3.  Merge two neighboring regions if  

4.  If a predetermined number of regions is 
reached, then stop; otherwise update functions 
a(⋅) and b(⋅,⋅), increase tmerge, and repeat Steps 
2-3 
€ 

µi(t) − µ j (t) < ε    for some small ε



Design parameters 

•  In the original algorithm, design parameters are 
defined as follows for segmentation of natural 
images: 
–  a(Ri) is some function of the region size |Ri|	


–  b(Ri, Rj) is the length of boundary between Ri and Rj	





Modifications of the SIDE algorithm 

•  Intensity penalty 
•  Boundary length penalty 
•  Boundary curvature penalty 
•  Stopping rule 



Intensity penalty 

•  Modify the original energy functional by including 
an additional term to penalize the evolution of a 
vector intensity too far from some desired state: 

€ 

ε = (1− λ) b(Ri,R j )E( µi − µ j )
{Ri ,R j }∈NBR −PRS

∑ + λ G( µi
DES − µi )

Ri

∑         (3)

where 

€ 

λ  is the weighting factor for the energy function G(x)

G(x) =
1
2
x 2  defines the cost of intensity difference x



Intensity penalty (cont’d) 

•  To find the desired states, we use a scalar 
feature µi and initialize it with the pixel intensity 
yi. Then a clustering is performed to approximate 
the distribution of pixel intensity to a Gaussian 
mixture model: 

€ 

f(y) ≈ ?kN(mk,?k;y)
k=1

K

∑       



Intensity penalty (cont’d) 

•  The desired state is determined by the 
Mahalanobis distance between the scalar 
feature and its closest mixture mean: 

€ 

µi
DES ≡ argmin

mk

µi −mk

σ k

       



Boundary length penalty 

•  To remedy a segmentation issue with 
excessively long boundaries from original SIDE 
algorithm 

•  Modified function b(⋅,⋅) defined as: 

€ 

b(Ri,R j ) = (boundary length)η     



Boundary curvature penalty 

•  Given a continuous curve c(t)=(x(t),y(t)), the 
curvature κ(t) can be defined as: 

•  The average curvature over a curve of length T 
can then be defined as: 



Boundary curvature penalty (cont’d) 

•  To include the boundary curvature penalty, a 
realization is to modify the function b(⋅, ⋅): 

where 



Boundary curvature penalty (cont’d) 

•  Unfortunately, the computation of curvature in 
discrete domain is ill-posed 
–  For example, computed curvature for a 45° straight 

line may produce multiple nonzero values 
•  For a discrete pixel on a curve c[n], an efficient 

and robust way to estimate curvature is to fit a 
smooth parabola through c[n-n0], c[n], and c[n
+n0], and compute the curvature of the parabola 
using (8) [Hermann06] 
–  n0=5 is empirically found useful for IN-100 dataset 



Experimental results 

•  Segmentation of MNML alloy 
•  Segmentation of IN100 alloy 
•  Segmentation of Rene88 alloy 



Segmentation of MNML alloy 



Segmentation procedure 

1.  Background isolation by fitting a bimodal 
Gaussian to the intensity histogram; scale the 
background standard deviation with σ1100σ1	



2.  Segment the foreground (two classes) with 
λ=0.99 (intensity penalty weight) using a bimodal 
Gaussian and η=2 (boundary length penalty 
exponent)	



3.  Stopping rule: stop when 500 gradient descent 
iterations evolve without any regions begin 
merged 



Results—λ=0.5(intensity penalty) 



Results—λ=0.99(intensity penalty) 



Results—η=1(boundary length penalty) 



Results—η=2(boundary length penalty) 



Segmentation of IN100 alloy 



Segmentation procedure 

1.  Due to the large range of pixel intensity values, 
λ is set to zero in this segmentation 

2.  Set η=2, κ1=κ2=0.2, and T1=0.1, T2=10 for 
boundary curvature penalty 

3.  Stopping rule:  by observing that the energy 
functional of this segmentation decreases 
exponentially, we locate the termination as the 
point of maximum derivative of energy evolution 

–  Not particularly robust and new methods could be 
investigated 



Results—η=1(boundary length penalty) 



Results—η=2(boundary length penalty) 



Results—without boundary curvature 
penalty 



Results—without boundary curvature 
penalty 



Results—with boundary curvature penalty 



Segmentation of Rene88 alloy 



Segmentation procedure 

•  Two stage segmentation each with specific 
parameter setting for different features 
–  Stage 1: segmentation of large blocks (or large 

regions) 
–  Stage 2: segmentation of particles (or small regions) 



Segmentation of large regions 

1.  Set λ=0.85 and η=1 for intensity and boundary 
length penalties, respectively	



2.  Set κ1=κ2=0.15, T1=0.1 and T2=10 for boundary 
curvature penalty 

3.  Set a(Ri)=|Ri| when region mass |Ri|>5000 and a
(Ri) = 0.05 otherwise 

4.  Stopping rule: find the number of regions 
smaller than 40 in which SIDE spent the largest 
number of iterations without a merge 



Segmentation of large regions—results 



Segmentation of large regions—results 



Segmentation of large regions—results 



Segmentation of large regions—results 



Segmentation of large regions—results 



Segmentation of small regions 

•  Segmenting large regions individually for finding 
small regions 
–  Some large regions contain no small regions, and so 

we can use a bimodal Gaussian mixture to fit 
histogram of pixel data within the large region. If one 
mode is significantly smaller than the other(π1<0.1 or 
π2<0.1), then stop; otherwise continue 



Segmentation of small regions (cont’d) 

•  For each large region containing small regions, we 
use a region-based initialization 
–  Classify each pixel into one of the two classes using an ML 

estimator with a bimodal Gaussian mixture model 
–  Initialize the segmentation regions Ri as contiguous 

collections of neighboring pixels with the same label, and 
initialize the scalar feature µi as the sample mean of the 
pixel intensities within Ri 

•  Set λ=0.95,η=1, and use no boundary curvature 
penalty 

•  Stopping rule: stop when 500 gradient descent 
iterations evolve without any regions being merged 



Results—complete segmentation 



Results—complete segmentation 



Results—complete segmentation 



Results—complete segmentation 



Results—complete segmentation 



Summary 

MNML-3 IN100 Rene88 

Intensity Penalty 
Very useful, as there 
are only three 
different intensities. 

Probably not usable 
for IN100, as there 
are too many 
different intensities. 

Very useful, as there 
are only two different 
intensities. 

Boundary length 
penalty 

Useful. Useful. Useful. 

Boundary 
smoothness 

penalty 

Very useful, to 
ensure the 
smoothness of 
boundaries of the 
circular regions. 

Useful, to avoid 
fractal-like 
boundaries. 

Very useful, 
especially in the 
large-region 
segmentation stage, 
to identify long 
straight twin 
boundaries. 

Stopping rule Useful. Useful. Useful. 


