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Model-Based lterative Reconstruction
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X — Reconstructed image
y — Measurements from physical system

X =arg min{”y — ), + U(x)}
m Bayesian framework
U(x)=-log p(x) - prior model
ly— £ = ~logp(ylx) - forward model



Example: Multislice Helical CT

Error Sinogram (Ax-y)

Cos.t X = arglrggl{%(y - AX)T Ay —Ax)+ U(x)}
Function *D: statistical weighting

*U(x): image regularization



Scanner Forward Model
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Distance Driven Projector*

= Fast and accurate projection of 3D voxels
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Image Prior Model

p(A) =|A| “Compressed sensing”
Image x p(A) =|A|” Generalized Gaussian MRF
Model: p(x) where p=12
p(a)=—14L Q-GGMRF
1+]A /501" '
withp=1.2 and g =2

* 3D regularization using 26 neighbors
* Design to:
* Preserve high contrast edges
i * Enhance low contrast sensitivity
_ _ * Q-GGMRF
U(X) po?’ {j;}ecp(xj %) *Convex for 1Sg<p<2
* Behaves like x? for |x| small
* Behaves like x¢ for |x| large

Jean-Baptiste Thibault, Ken Sauer, Charles Bouman, and Jiang Hsieh, “A Three-Dimensional Statistical Approach to
Improved Image Quality for Multi-Slice Helical CT,” Medical Physics, pp. 4526-4544, vol. 34, no. 11, November 2007.



Model-Based Image Reconstruction

Charles A. Bouman, Professor of ECE Purdue University

= Multislice helical scan computed tomgraphic (CT) imaging

— Estimated 72 million CT scans in the US in 2007.
— Dramatic increase has virtually eliminated the need for “exploratory surgery”.

— Since inception, commercial scanners have used filtered back projection (FBP).
— Cumulative X-ray dosage from CT of growing concern.

= Model-Based Iterative Reconstruction (MBIR)

— Compute the “best” reconstruction given the data and known statistics of images.
— Uses iterative process to fit reconstruction to measurements.

» GE Healthcare Veo product - “I see” in Spanish
— GE Healthcare’s commercial software/hardware implementation of MBIR

— On sale in Europe - http://radiologynews.gehealthcare.com/en/computed/pm/detail/0/200/4/veo-.html
— Pending FDA 510(k) review for use in the US.
— Dosage reduction of ~4x

— Research performed in collaboration with:
Ken Sauer, University of Notre Dame
Jean-Baptiste Thibault, GE Healthcare
Jiang Hsieh, GE Healthcare
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] ] DLP 45, 0.625 mm
Routine abdomen pelvis 100 kVp, 37-51 mA,

Dose - 0.77 mSv*
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High resolution with low noise

FBP Reconstruction MBIR/Veo Reconstruction

Bone Plus algorithm WW 2000 WL 400




Improving resolution & contrast

MBIR/Veo




Improved detalil

FBP Reconstruction MBIR/Veo Reconstruction




DLP 35, 0.625 mm
Routine abdomen pelvis 100 kVp, 25-38 mA

Dose - 0.6 mSv

FBP Reconstruction




Routine chest CT DLP 6.3, 0.625 mm
at chest X-ray dose - 0.09 mSv

100 kVp, 10 mA

FBP Reconstruction MBIR/Veo Reconstruction

“Typical CXR effective dose is about 0.06 mSv.”

Source: Health Physics Society.
http://www.hps.org/publicinformation/ate/q2372.html




_ 241 DLP, 0.625 mm
Routine head 120 kVp, NI 3.0 (120-226 mA)

ultra low dose - 0.5 mSv*




Pediatric Image at Low Dose (Coronal)

Liver laceration
better defined

Free fluid/Blood in
abdomen seen
more clearly

Bladder
better
visualized

ASIR Reconstruction MBIR Reconstruction

oo courtesy of The Queen SIvia ERIAIENS b jiatric trguma, 120KV, 52-70mA, 0.4s/rot, 0.625mm, WW

Dr. Stalhammar 300 WL 50




Pediatric Image at Low Dose (Transverse)

ASIR Reconstruction MBIR Reconstruction

mages courtesy of The Queen Sivia ChIdreN's b yiatric trguma, 120KV, 52-70mA, 0.4s/rot, 0.625mm, WW
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Abdomen Imaging

Adrgnal nodule
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MAP Reconstruction For Microscopy

= Darkfield STEM
* High Angle Annular Dark Field (HAADF)
« Tilt axis parallel beam tomography

* Obeys emission tomography forward model

= X-Ray Microscopic Imaging
 Axial cone beam tomography problem

* Obeys transmission tomography forward model

* Prior modeling of materials
 MRF models

 Sparse manifold methods

* Time varying tomography
* Reconstruction from sparse measurements

 Imaging dislocation structures
18



High Angle Annular Dark Field (HAADF) STEM
Tomography

Electron beam

" Acquisition
= An electron beam is focused at a point on
the sample.
RN = An annular ring detects elastically scattered
> electrons, but angle is small.

~./ = Geometry
\ = Electron beam is scanned across sample
Tilted

Specimen = Sample is tilted in one axis
= Results in 2D parallel beam data

Specimen

High Angle
Scattered —
Electrons

Annular Detgctor

_
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HAADF Measurement Model

dz 'Y

Vv
I 1

m

Scattering coefficient:
s(z)=0(z)N(z)

Attenuation coefficient:
1(z)

Attenuation of unscattered beam
10)=1, p[ J u(r)dr]
0
A1)

Attenuation of scattered beam

% — exp —}‘u(r)dr 1(z)s(z)

I, =‘T"exp —}u(r)dr 1(z)s(z)dz

Combing expressions
T

I = ITIs(z)dz
0

So for homogeneous case withu(z)=0
[Pennycook,1986], we have

I, =1,0NT



HAADF Statistical Forward Model

* Follows emission tomography equations

* [, 1s Poisson so
E[1,]=Var|1,]=1 j

* [, must be determined through calibration or estimation

* MAP reconstruction 1s given by
% = argmin{(y - Ax)' A(y— Ax)+S(x)}

where |
Yi = Im,i and Ai,i =5

m,i

21



X-Ray Cone Beam Transmission Tomography

Ve Imaging array

= Geometry
» X-ray source forms cone-beam
 Axial rotation provides 3D data
= Acquisition
* Measurements are Poisson

» Beer’s law can be used to compute density integral

E[X]=2,, exp(—},u(r)dr]

22



X-ray Transmission Statistical Forward
Model
" Follows transmission tomography equations

* A, 1s Poisson

* A,, must be determined through calibration or estimation

* MAP reconstruction 1s given by
% = argmin{(y— Ax)' A(y— Ax)+S(x)}

where

y, = —log[j—i] and A, = A,

0,i

23



Material Prior Models
2 N ;

= Enormous amount of structure to exploit
* Repeated morphology
* Thin manifolds

 Underlying physics

= How can this be effectively modeled?
* Markov random field (MRF) priors
 Sparse subspaces using over-complete bases
 Dictonary-based learning

* Manifold learning 24



Time Varying Tomography

electron beam

A / /]
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Dislocation

= Assumptions
* Time varying structure

* Time varying measurements

= Sparse reconstruction
 Number of additional unknowns 1s small

« Reconstruction only requires a small number of additional measurements

25



Project Objectives

* Implement MAP reconstruction for HAADF
tomography

" Develop prior models for real materials

* Formulate time varying reconstruction problem

26



