ECE 600 Homework 9

1. Explain why the central limit theorem does not hold if the random variables X_k have a Cauchy density. Find the pdf of the random variable

$$\mathbf{Y} = \sum_{k=1}^{n} \mathbf{X}_{k}$$

if the X_k are iid Cauchy random variables with parameters $\mu = 0$ and $\alpha > 0$.

2. The strong law of large numbers states that, with probability 1, the successive arithmetic averages of a sequence of iid random variables converge to their common mean μ . What do the successive geometric averages converge to? That is, find

$$\lim_{n\to\infty} \left(\prod_{k=1}^n \mathbf{X}_k\right)^{1/n}$$

3. The amount of time that a certain type of component functions before failing is a random variable with pdf

$$f(x) = 2x \quad 0 < x < 1$$

Once the component fails it is immediately replaced by another one of the same type. If we let X_i denote the lifetime of the *i*th component to be put in use, then $S_n = \sum_{i=1}^n X_i$ represents the time of the *n*th failure. The long-term rate at which failures occur, denoted *r*, is defined by

$$r = \lim_{n \to \infty} \frac{n}{S_n}$$

Assuming that the random variables X_i , $i \ge 1$, are independent, determine r.

- 4. The continuous parameter random process $X(t) = e^{At}$ is a family of exponentials depending on the random variable A. Express the mean $\mu(t)$, the autocorrelation function $R(t_1, t_2)$, and the first-order pdf f(x;t) of X(t) in terms of the pdf $f_A(a)$ of A.
- 5. The random variable C is uniform in the interval (0,*T*), where *T* is not random. Find the autocorrelation function of X_t if $X_t = u(t C)$.
- 6. A random process has sample functions of the form

$\mathbf{X}(t) = \mathbf{A}\sin(\boldsymbol{\omega}_0 t)$

where A is a random variable uniform on [-1,1], and ω_0 is fixed.

- a. Find E[X(t)].
- b. Find the pdf of $X(\pi/2\omega_0)$.