ECE 600 Homework 8

- 1. A message requires N time units to be transmitted, where N is a geometric random variable with pmf $p_j = (1 a)a^{j-1}$ for j = 1, 2, ... A single new message arrives during a time unit with probability p, and no new messages arrive with probability 1 p. Let K be the number of new messages that arrive during the transmission of a single message.
 - (a) Find the pmf of K. Hint: $(1-\beta)^{-(k+1)} = \sum_{n=k}^{\infty} {n \choose k} \beta^{n-k}$.
 - (b) Fine E[K] and Var[K] using iterated expectation.
- 2. For any two random variables X and Y with $E[X^2] < \infty$, show that $Var(X) \ge E[Var(X|Y)]$, where $Var(X|Y) = E[X^2|Y] (E[X|Y])^2$.
- 3. The input X to a communication channel is +1 or -1 with probability p and 1 p, respectively. The received signal Y is the sum of X and noise N which has a Gaussian distribution with zero mean and variance $\sigma^2 = 0.25$.
 - (a) Find the joint probability $P(X = j, Y \le y)$.
 - (b) Find the marginal pmf of X and the marginal pdf of Y.
 - (c) Suppose we are given that Y > 0. Which is more likely, X = 1 or X = -1?
- 4. The input X to a communication channel is a zero-mean, unit-variance Gaussian random variable. The channel output Y is the sum of X and a noise signal N, where N is a zero-mean Gaussian random variable with variance σ_N^2 . The random variables X and N are independent.
 - (a) Find the conditional pdf of Y given X = x. *Hint:* Y = N + x is a linear function of N.
 - (b) Find the joint pdf of X and Y.
 - (c) Find the conditional pdf of X given Y = y.
 - (d) Suppose that when Y = y we estimate the input X by the value $x_0 = g(y)$ that maximizes $P(x_0 < X < x_0 + dx | Y = y)$. Find x_0 .
- 5. Let X_1, \ldots, X_n be random variables that are independent with finite variances. Form

$$Y = \sum_{i=1}^{n} \alpha_i X_i$$

where α_i is real for every *i*. Find the mean and variance of *Y*.

- 6. Let $X_1, X_2, ..., X_n$ be *n* i.i.d. random variables having uniform distribution on [0,1]. Also, let $X_{(1)}$ and $X_{(n)}$ be random variables denoting the minimum and maximum of the X_i 's, respectively. We define the random variable $Y = X_{(1)} + X_{(n)}$. Compute the pdf of Y.
- 7. Let ω be selected from the interval S = [0, 1], where the probability that ω is in a subinterval of S is equal to the length of the subinterval. For $n \ge 1$, define the following random sequences:
 - (a) $U_n(\omega) = \frac{\omega}{n}$
 - (b) $V_n(\omega) = \omega \left(1 \frac{1}{n}\right)$
 - (c) $W_n(\omega) = \omega e^n$
 - (d) $Y_n(\omega) = \cos(2\pi n\omega)$
 - (e) $Z_n(\omega) = e^{-n(nw-1)}$

Which of these sequences converges everywhere? Almost everywhere? Identify the limiting random variable.

- 8. Let X_n and Y_n be two (possibly dependent) sequences of random variables that converge in the mean square sense to X and Y, respectively. Does the sequence $X_n + Y_n$ converge in the mean square sense, and if so, to what limit?
- 9. Show that if $a_n \to a$ and $\mathbb{E}[|X_n a_n|^2] \to 0$, then $X_n \to a$ in the mean square sense as $n \to \infty$.