ECE 600 Homework 8

1. A message requires N time units to be transmitted, where N is a geometric random variable with $\operatorname{pmf} p_{j}=(1-a) a^{j-1}$ for $j=1,2, \ldots$. A single new message arrives during a time unit with probability p, and no new messages arrive with probability $1-p$. Let K be the number of new messages that arrive during the transmission of a single message.
(a) Find the pmf of K. Hint: $(1-\beta)^{-(k+1)}=\sum_{n=k}^{\infty}\binom{n}{k} \beta^{n-k}$.
(b) Fine $\mathrm{E}[K]$ and $\operatorname{Var}[K]$ using iterated expectation.
2. For any two random variables X and Y with $\mathrm{E}\left[X^{2}\right]<\infty$, show that $\operatorname{Var}(X) \geq$ $\mathrm{E}[\operatorname{Var}(X \mid Y)]$, where $\operatorname{Var}(X \mid Y)=\mathrm{E}\left[X^{2} \mid Y\right]-(\mathrm{E}[X \mid Y])^{2}$.
3. The input X to a communication channel is +1 or -1 with probability p and $1-p$, respectively. The received signal Y is the sum of X and noise N which has a Gaussian distribution with zero mean and variance $\sigma^{2}=0.25$.
(a) Find the joint probability $P(X=j, Y \leq y)$.
(b) Find the marginal pmf of X and the marginal pdf of Y.
(c) Suppose we are given that $Y>0$. Which is more likely, $X=1$ or $X=-1$?
4. The input X to a communication channel is a zero-mean, unit-variance Gaussian random variable. The channel output Y is the sum of X and a noise signal N, where N is a zero-mean Gaussian random variable with variance σ_{N}^{2}. The random variables X and N are independent.
(a) Find the conditional pdf of Y given $X=x$. Hint: $Y=N+x$ is a linear function of N.
(b) Find the joint pdf of X and Y.
(c) Find the conditional pdf of X given $Y=y$.
(d) Suppose that when $Y=y$ we estimate the input X by the value $x_{0}=g(y)$ that maximizes $P\left(x_{0}<X<x_{0}+d x \mid Y=y\right)$. Find x_{0}.
5. Let X_{1}, \ldots, X_{n} be random variables that are independent with finite variances. Form

$$
Y=\sum_{i=1}^{n} \alpha_{i} X_{i}
$$

where α_{i} is real for every i. Find the mean and variance of Y.
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be n i.i.d. random variables having uniform distribution on $[0,1]$. Also, let $X_{(1)}$ and $X_{(n)}$ be random variables denoting the minimum and maximum of the X_{i} 's, respectively. We define the random variable $Y=X_{(1)}+X_{(n)}$. Compute the pdf of Y.
7. Let ω be selected from the interval $\mathcal{S}=[0,1]$, where the probability that ω is in a subinterval of \mathcal{S} is equal to the length of the subinterval. For $n \geq 1$, define the following random sequences:
(a) $U_{n}(\omega)=\frac{\omega}{n}$
(b) $V_{n}(\omega)=\omega\left(1-\frac{1}{n}\right)$
(c) $W_{n}(\omega)=\omega e^{n}$
(d) $Y_{n}(\omega)=\cos (2 \pi n \omega)$
(e) $Z_{n}(\omega)=e^{-n(n w-1)}$

Which of these sequences converges everywhere? Almost everywhere? Identify the limiting random variable.
8. Let X_{n} and Y_{n} be two (possibly dependent) sequences of random variables that converge in the mean square sense to X and Y, respectively. Does the sequence $X_{n}+Y_{n}$ converge in the mean square sense, and if so, to what limit?
9. Show that if $a_{n} \rightarrow a$ and $\mathrm{E}\left[\left|X_{n}-a_{n}\right|^{2}\right] \rightarrow 0$, then $X_{n} \rightarrow a$ in the mean square sense as $n \rightarrow \infty$.

