ECE 600 Homework 6

1. Let X and Y be independent random variables with Y uniformly distributed from 0 to 1. Let X have cdf and pdf $F_{X}(x)$ and $f_{X}(x)$, respectively. Show that the pdf of the random variable $Z=X+Y$ is given by

$$
f_{Z}(z)=F_{X}(z)-F_{X}(z-1)
$$

2. The joint density function of X and Y is given by

$$
f_{X Y}(x, y)= \begin{cases}e^{-(x+y)} & x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find the density function of the random variable X / Y.
3. Two fair dice are rolled. Find the joint probability mass function of X and Y when
(a) X is the larger value rolled and Y is the sum of the two values.
(b) X is the smaller and Y is the larger value rolled.
4. The number of bytes N in a message has a geometric distribution with parameter p, i.e.,

$$
p_{N}(k)=p(1-p)^{k}, k=0,1,2,3, \ldots
$$

where $0 \leq p \leq 1$. Suppose that the messages are broken into packets of length M bytes. Let Q be the number of full packets in a message and let R be the number of bytes left over. Find the joint pmf and the marginal pmfs of Q and R. Are Q and R independent?
5. Let X and Y be continuous random variables and

$$
\begin{gathered}
Z=X \cos \phi+Y \sin \phi \\
W=-X \sin \phi+Y \cos \phi
\end{gathered}
$$

where the angle ϕ is not random. Find $f_{Z W}$ in terms of $f_{X Y}$.
6. Let R and Θ be independent random variables such that R has a Rayleigh density

$$
f_{R}(r)=\frac{r}{\sigma^{2}} e^{-r^{2} / 2 \sigma^{2}} u(r)
$$

and Θ is uniformly distributed on $[-\pi, \pi]$. Show that $X=R \cos \Theta$ and $Y=R \sin \Theta$ are independent random variables and that each has a normal density, $N\left(0, \sigma^{2}\right)$.
7. Find the joint pdf of random variables M and V defined by

$$
\begin{gathered}
M=\frac{X_{1}+X_{2}}{2} \\
V=\frac{\left(X_{1}-M\right)^{2}+\left(X_{2}-M\right)^{2}}{2}
\end{gathered}
$$

in terms of the joint pdf of random variables X_{1} and X_{2}. (Note: M and V are referred to as the sample mean and sample variance of X_{1} and X_{2}.) Evaluate the joint pdf of M and V if X_{1} and X_{2} are independent exponential random variables with the same parameter.
8. Let X and Y be two independent binomial random variables with pmf

$$
p_{X}(k)=p_{Y}(k)= \begin{cases}\binom{n}{k} p^{k}(1-p)^{n-k} & 0 \leq k \leq n \\ 0 & \text { otherwise }\end{cases}
$$

Let $Z=X+Y$. Find the pmf of Z. Do you find anything special about the pmf of Z ? Comment on it.

