ECE 600 Homework 5

1. Find the mean and variance of the binomial random variable.
2. Show that $\mathrm{E}[X]$ for the random variable with cdf

$$
F_{X}(x)= \begin{cases}1-\frac{1}{x} & x \geq 1 \\ 0 & x<1\end{cases}
$$

does not exist.
3. Let $Y=A \cos (\omega t)+c$, where A is a random variable with mean m and variance σ^{2}, and ω and c are constants. Find the mean and variance of Y.
4. Let $g(X)=b a^{X}$, where a and b are positive constants and X is a Poisson random variable. Find $\mathrm{E}[g(X)]$.
5. The hat check staff has had a long day, and at the end of a party they decide to return people's hats at random. Suppose that n people have their hat returned at random.
(a) What is the expected number of people who get the correct hat back?
(b) In the limit as $n \rightarrow \infty$, what is the answer to part (a)? Do you expect anyone to get his/her hat back?
6. There are n bags numbered $1, \ldots, n$ and an infinite supply of balls. You pick up a ball and it is equally likely that you put it in any of the bags.
(a) What is the expected number of balls you need to put in the n bags before the $i^{\text {th }}$ bag has at least one ball?
(b) Show that the expected number of balls that you need to put in before every bag has at least one ball is $n \mathrm{H}(n)$, where

$$
\mathrm{H}(n)=1+\frac{1}{2}+\ldots+\frac{1}{1-n}+\frac{1}{n}
$$

7. Let the joint cumulative distribution function (cdf) of random variables X and Y be $F_{X Y}(x, y)$. Show that

$$
\mathrm{P}\left(\left\{x_{1}<X \leq x_{2}\right\} \cap\left\{y_{1}<Y \leq y_{2}\right\}\right)=F_{X Y}\left(x_{2}, y_{2}\right)-F_{X Y}\left(x_{1}, y_{2}\right)-F_{X Y}\left(x_{2}, y_{1}\right)+F_{X Y}\left(x_{1}, y_{1}\right)
$$

8. Determine the constant b such that each of the following is a valid probability density function (pdf).
(a)

$$
f_{X Y}(x, y)= \begin{cases}3 x y & 0 \leq x \leq 1 ; 0 \leq y \leq b \\ 0 & \text { elsewhere }\end{cases}
$$

(b)

$$
f_{X Y}(x, y)= \begin{cases}b x(1-y) & 0 \leq x \leq 0.5 ; 0 \leq y \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

(c)

$$
f_{X Y}(x, y)= \begin{cases}b\left(x^{2}+4 y^{2}\right) & 0 \leq|x|<1 ; 0 \leq y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

9. If $f_{X Y}(x, y)=g(x) h(y)$, find the mardinal pdfs $f_{X}(x)$ and $f_{Y}(y)$.
10. For two independent continuous random variables X and Y, show that

$$
\mathrm{P}(\{Y \leq X\})=\int_{-\infty}^{\infty} F_{Y}(x) f_{X}(x) d x=1-\int_{-\infty}^{\infty} F_{X}(x) f_{Y}(x) d x
$$

11. Suppose $f_{X Y}(x, y)$ is uniform with region of support shown in the figure below. Find $f_{X}(x)$ and $f_{Y}(y)$. Are X and Y independent?

12. The random vector (X, Y) has a joint pdf

$$
f_{X Y}(x, y)= \begin{cases}2 e^{-x} e^{-2 y} & x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find the probability of the following events:
(a) $\{X+Y \leq 8\}$
(b) $\{X<Y\}$
(c) $\left\{X^{2}<Y\right\}$

