COMER

October 7, 2010

ECE 600 Exam 1

1. Enter your name and signature in the space provided below.
2. You may not use a calculator or any other reference materials
3. Partial credit will be given, at the discretion of the instructor.

Name:

Signature:

1. (30 points) Consider an experiment in which a die is rolled repeatedly until a six is rolled, at which point the experiment stops. The outcome of this experiment is the sequence of values rolled. Note: For this problem it is important that your notation for the sample space and the event space are consistent.
(a) (10 points) Define the sample space for this experiment.
(b) (10 points) Let E_{n} be the event that the total number of rolls made is n. What outcomes are in E_{n} ?
(c) (10 points) What outcomes are in $\left(\cup_{n=1}^{\infty} E_{n}\right)^{c}$?
2. (20 points) Let F_{1} and F_{2} be σ-fields in S. Show that $F_{1} \cap F_{2}$ is also a σ-field.
3. (20 points) Consider the sample space $S=[0,1]$, the interval containing real numbers from 0 to 1 . Let the probability of an interval in S be the length of the interval. Find $P(X \in[0,1 / 2))$ if X is a random variable defined as $X(\omega)=\omega^{2}$.
4. (30 points) Let X be a geometric random variable, with probability mass function

$$
P(X=k)=(1-p) p^{k-1}
$$

for $k=1,2,3, \ldots$.
(a) (15 points) Find $P(X>n)$ for any integer $n \geq 0$. Your answer should be given in terms of n and the parameter p.
(b) (15 points) Compute $P(X>n+k \mid X>n)$ for integers $k \geq 0, n \geq 0$.

Note: You may need the formula $\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}$.

