COMER
April 5, 2016

ECE 302 Exam 3

1. Enter your name and signature in the space provided below. YOUR SIGNATURE CERTIFIES THAT YOU WILL NOT ENGAGE IN ANY CHEATING DURING THIS EXAM.
2. You may not use a calculator or any other reference materials.

Name:

Signature:

No Partial Credit

You must CLEARLY mark your answer for each problem.

1. (5 points) If X is a random variable with probability mass function $p_{X}(0)=\frac{1}{4}, p_{X}\left(\frac{1}{2}\right)=\frac{1}{4}$, and $p_{X}\left(\frac{5}{4}\right)=\frac{1}{2}$, what is $E[X]$?
(a) 0
(b) $1 / 8$
(c) $2 / 8$
(d) $3 / 8$
(e) $4 / 8$
(f) $5 / 8$
(g) $6 / 8$
(h) $7 / 8$
(i) 1
2. (5 points) Given continuous random variables X and Y with joint probability density function $f_{X Y}(x, y)$ and joint cumulative distribution function $F_{X Y}(x, y)$, all of the following must have the same value EXCEPT:
(a) $\lim _{y \rightarrow \infty}\left[F_{X Y}(b, y)-F_{X Y}(a, y)\right]$
(b) $\int_{a}^{b} f_{X}(x) d x$
(c) $\int_{a}^{b} \int_{-\infty}^{\infty} f_{X Y}(x, y) d y d x$
(d) $F_{X Y}(b, y)-F_{X Y}(a, y)$
(e) $P(a<X \leq b)$
3. (5 points) Let X and Y be independent discrete random variables each uniformly distributed between 0 and 3 (i.e., the marginal probability mass functions $p_{X}(x)$ and $p_{Y}(y)$ are constant for $x=0,1,2,3$ and $y=0,1,2,3$, respectively). What value does the joint probability mass function $p_{X Y}(x, y)$ take for every $x=0,1,2,3$ and $y=0,1,2,3$?
(a) 3
(b) 9
(c) $\frac{1}{3}$
(d) $\frac{1}{9}$
(e) 4
(f) 16
(g) $\frac{1}{4}$
(h) $\frac{1}{16}$

Limited Partial Credit

You must put your final answers in the boxes provided. Credit of either 0,5 , or 10 points will be granted for each problem. You must justify your solution to get credit.
4. (10 points) Two random variables X and Y have joint probability density function

$$
f_{X Y}(x, y)= \begin{cases}c x e^{-y}, & x \in[0,1], y \in[0,1] \\ 0, & \text { otherwise }\end{cases}
$$

Find the marginal probability density function of X. You may leave your answer in terms of c.

Answer:
5. (10 points) For the previous problem, find the value of c.

Answer:
6. (10 points) Consider a random variable X. If $E[X]=1$ and $\operatorname{Var}(X)=4$, find $E\left[(3+X)^{2}\right]$.

Answer:

7. (10 points) Let X and Y be continuous random variables. For any real numbers x_{1}, x_{2}, y with $x_{1}<$ x_{2}, write $P\left(x_{1}<X \leq x_{2}, Y \leq y\right)$ in terms of the joint cumulative distribution function of X and Y.

Answer:

Partial Credit Problems

You must justify your solution to get credit. Partial credit will be given at the discretion of the instructor.
8. (20 points) Let X be a discrete uniform random variable with probability mass function $p_{X}(k)=\frac{1}{7}$ for $k=-3,-2,-1,0,1,2,3$. If $Y=\max (X, 0)$, find the probability mass function of Y.
9. (20 points) Let X be a continuous random variable that is uniformly distributed on $[-\pi, \pi]$, so that $f_{X}(x)=\frac{1}{2 \pi}$ for $-\pi \leq x \leq \pi$ and 0 elsewhere. If $Y=\cos X$, find the cumulative distribution function of Y.

SCRAP PAPER

