ECE 302 Homework 8
 COMER

Topics: Two random variables, joint distribution functions, joint density functions, joint mass functions, independent random variables

1. The amplitudes of two signals X and Y have joint pdf

$$
f_{X Y}(x, y)=e^{-x / 2} y e^{-y^{2}}
$$

for $x>0, y>0$.
(a) Find the joint cdf.
(b) Find $P\left(X^{1 / 2}>Y\right)$.
(c) Find the marginal pdfs.
2. The random vector (X, Y) has a joint pdf

$$
f_{X Y}(x, y)=2 e^{-x} e^{-2 y}
$$

for $x>0, y>0$. Find the probability of the following events:
(a) $\{X+Y \leq 8\}$.
(b) $\{X-Y \leq 10\}$.
(c) $\left\{X^{2}<Y\right\}$.
3. Two fair dice are rolled. Find the joint pmf of X and Y when
(a) X is the larger value rolled and Y is the sum of the two values.
(b) X is the smaller and Y is the larger value rolled.
4. Let $h(x, y)$ be a joint Gaussian pdf for zero-mean, unit-variance Gaussian random variables with the parameter $r=r_{1}$. Let $g(x, y)$ be a joint Gaussian pdf for zero-mean, unit-variance Gaussian random variables with the parameter $r=r_{2} \neq r_{1}$. Suppose the random variables X and Y have joint pdf $f_{X Y}(x, y)=[h(x, y)+g(x, y)] / 2$.
(a) Find the marginal pdfs for X and Y.
(b) Explain why X and Y are not jointly Gaussian random variables.
5. Let X and Y be independent random variables that are uniformly distributed in $[-1,1]$. Find the following probabilities:
(a) $P\left(X^{2}<1 / 2,|Y|<1 / 2\right)$.
(b) $P(4 X<1, Y<0)$.
(c) $P(X Y<1 / 2)$.
(d) $P(\max (X, Y)<1 / 3)$.

