ECE 302 Homework 4 COMER

Topics: Random variables, cumulative distribution functions, probability density functions

1. A random variable has a cumulative distribution function given by

$$
F_{X}(x)= \begin{cases}0, & \text { if } x<-1 \\ 0.5+0.5 x, & \text { if }-1 \leq x<1 \\ 1, & \text { if } x \geq 1\end{cases}
$$

Find the probability that
(a) $X=\frac{1}{4}$
(b) $X>\frac{3}{4}$
(c) $-0.5<X \leq 0.5$
2. The cumulative distribution function for a random variable X is given by

$$
F_{X}(x)= \begin{cases}0, & \text { if } x<1 \\ A[1-\exp (-(x-1))], & \text { if } x \geq 1\end{cases}
$$

(a) For what value of A is this a valid cdf?
(b) What is $F_{X}(2)$?
(c) Find the probability that $2<X<\infty$.
(d) Find the probability that $1<X \leq 3$.
3. Find the probability density function of the random variable from the previous problem and sketch it.
(a) Using the pdf, find the probability that $2<X \leq 3$.
(b) Using the pdf, find the probability that $X<2$.
4. The probability density function of a random variable has the form

$$
f_{X}(x)=K e^{-2 x} \mathbf{u}(x)
$$

where $\mathbf{u}(x)$ is the unit step function. Find
(a) the value of K
(b) the probability that $X>1$
(c) the probability that $X \leq 0.5$
5. Let X be an exponential random variable with parameter λ, which means that $f_{X}(x)=\lambda \mathrm{e}^{-\lambda x} \mathbf{u}(x)$.
(a) For $x>0$, find $P(X \leq x)$.
(b) For $x_{2}>x_{1}>0$, find $P\left(x_{1} \leq X \leq x_{2}\right)$.
(c) For $x>0$, find $P(X \geq x)$.
(d) Segment the positive real line into three equally likely disjoint intervals.
6. The median of a random variable X is defined as the value $x_{m} \in \mathbb{R}$ satisfying $P\left(X \leq x_{m}\right)=\frac{1}{2}$. Find the median of an exponential random variable X with parameter λ. Your answer should be given in terms of λ.

