ECE 302 Homework 10 COMER

Topics: Joint expectation, conditional distributions

1. Consider two random variables X and Y.
(a) Write $E\left[(X+Y)^{2}\right]$ in terms of the moments of X, the moments of Y, and the correlation of X and Y.
(b) Find the variance of $X+Y$ in terms of the moments of X, the moments of Y, and the correlation of X and Y.
(c) Under what condition is the variance of the sum equal to the sum of the individual variances of X and Y ?
2. Find $E[|X-Y|]$ if X and Y are independent exponential random variables with means μ_{X} and μ_{Y}, respectively.
3. Person A and Person B each toss a fair coin twice. Let X be the difference and Y the sum of the number of heads tossed by Person A and Person B. Find the correlation and covariance of X and Y, and indicate whether the random variables are independent, orthogonal, and/or uncorrelated.
4. An accident occurs at a point X that is uniformly distributed on a road of length L. At the time of the accident, an ambulance is at a location Y that is also uniformly distributed on the road. Assuming that X and Y are independent, find the expected distance between the ambulance and the point of the accident.
5. Let X be an exponential random variable.
(a) Find the conditional cdf $F_{X}(x \mid X>t)$ and the conditional pdf $f_{X}(x \mid X>t)$, where t is a real number.
(b) Show that $P(X>t+x \mid X>t)=P(X>x)$. This is called the memoryless property.
6. The input X to a communication channel is +1 or -1 with probability p and $1-p$, respectively. The received signal Y is the sum of X and noise N which has a Gaussian distribution with zero mean and variance $\sigma^{2}=0.25$.
(a) Find the joint probability $P(X=j, Y \leq y)$.
(b) Find the marginal pmf of X and the marginal pdf of Y.
(c) Suppose we are given that $Y>0$. Which is more likely, $X=1$ or $X=-1$?
7. The input X to a communication channel is a zero-mean, unit-variance Gaussian random variable. The channel output Y is the sum of X and a noise signal N, where N is a zero-mean Gaussian random variable with variance σ_{N}^{2}. The random variables X and N are independent.
(a) Find the conditional pdf of Y given $X=x$. Hint: $Y=N+x$ is a linear function of N.
(b) Find the joint pdf of X and Y.
(c) Find the conditional pdf of X given $Y=y$.
(d) Suppose that when $Y=y$ we estimate the input X by the value $x_{0}=g(y)$ that maximizes $P\left(x_{0}<X<\right.$ $\left.x_{0}+d x \mid Y=y\right)$. Find x_{0}.
